上海市五愛高級中學2023屆高三下學期第二次模擬考試(數學試題文)試題_第1頁
上海市五愛高級中學2023屆高三下學期第二次模擬考試(數學試題文)試題_第2頁
上海市五愛高級中學2023屆高三下學期第二次模擬考試(數學試題文)試題_第3頁
上海市五愛高級中學2023屆高三下學期第二次模擬考試(數學試題文)試題_第4頁
上海市五愛高級中學2023屆高三下學期第二次模擬考試(數學試題文)試題_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

上海市五愛高級中學2023屆高三下學期第二次模擬考試(數學試題文)試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數列是公差為的等差數列,且成等比數列,則()A.4 B.3 C.2 D.12.已知集合,,則A. B. C. D.3.已知斜率為k的直線l與拋物線交于A,B兩點,線段AB的中點為,則斜率k的取值范圍是()A. B. C. D.4.已知,函數在區(qū)間上恰有個極值點,則正實數的取值范圍為()A. B. C. D.5.已知復數z滿足,則在復平面上對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知是定義是上的奇函數,滿足,當時,,則函數在區(qū)間上的零點個數是()A.3 B.5 C.7 D.97.復數的實部與虛部相等,其中為虛部單位,則實數()A.3 B. C. D.8.己知全集為實數集R,集合A={x|x2+2x-8>0},B={x|log2x<1},則等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)9.已知、分別是雙曲線的左、右焦點,過作雙曲線的一條漸近線的垂線,分別交兩條漸近線于點、,過點作軸的垂線,垂足恰為,則雙曲線的離心率為()A. B. C. D.10.用一個平面去截正方體,則截面不可能是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形11.一個幾何體的三視圖及尺寸如下圖所示,其中正視圖是直角三角形,側視圖是半圓,俯視圖是等腰三角形,該幾何體的表面積是()A.B.C.D.12.設,則復數的模等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.(5分)某膳食營養(yǎng)科研機構為研究牛蛙體內的維生素E和鋅、硒等微量元素(這些元素可以延緩衰老,還能起到抗癌的效果)對人體的作用,現從只雌蛙和只雄蛙中任選只牛蛙進行抽樣試驗,則選出的只牛蛙中至少有只雄蛙的概率是____________.14.已知,滿足約束條件則的最大值為__________.15.已知i為虛數單位,復數,則=_______.16.如圖,在菱形ABCD中,AB=3,,E,F分別為BC,CD上的點,,若線段EF上存在一點M,使得,則____________,____________.(本題第1空2分,第2空3分)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(1)若函數在處取得極值1,證明:(2)若恒成立,求實數的取值范圍.18.(12分)已知都是各項不為零的數列,且滿足其中是數列的前項和,是公差為的等差數列.(1)若數列是常數列,,,求數列的通項公式;(2)若是不為零的常數),求證:數列是等差數列;(3)若(為常數,),.求證:對任意的恒成立.19.(12分)我們稱n()元有序實數組(,,…,)為n維向量,為該向量的范數.已知n維向量,其中,,2,…,n.記范數為奇數的n維向量的個數為,這個向量的范數之和為.(1)求和的值;(2)當n為偶數時,求,(用n表示).20.(12分)手工藝是一種生活態(tài)度和對傳統(tǒng)的堅持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴把質量關,合作社對村民制作的每件手工藝品都請3位行家進行質量把關,質量把關程序如下:(i)若一件手工藝品3位行家都認為質量過關,則該手工藝品質量為A級;(ii)若僅有1位行家認為質量不過關,再由另外2位行家進行第二次質量把關,若第二次質量把關這2位行家都認為質量過關,則該手工藝品質量為B級,若第二次質量把關這2位行家中有1位或2位認為質量不過關,則該手工藝品質量為C級;(iii)若有2位或3位行家認為質量不過關,則該手工藝品質量為D級.已知每一次質量把關中一件手工藝品被1位行家認為質量不過關的概率為,且各手工藝品質量是否過關相互獨立.(1)求一件手工藝品質量為B級的概率;(2)若一件手工藝品質量為A,B,C級均可外銷,且利潤分別為900元,600元,300元,質量為D級不能外銷,利潤記為100元.①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;②記1件手工藝品的利潤為X元,求X的分布列與期望.21.(12分)在中,角,,所對的邊分別為,,,且.求的值;設的平分線與邊交于點,已知,,求的值.22.(10分)已知數列{an}滿足條件,且an+2=(﹣1)n(an﹣1)+2an+1,n∈N*.(Ⅰ)求數列{an}的通項公式;(Ⅱ)設bn=,Sn為數列{bn}的前n項和,求證:Sn.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

根據等差數列和等比數列公式直接計算得到答案.【詳解】由成等比數列得,即,已知,解得.故選:.【點睛】本題考查了等差數列,等比數列的基本量的計算,意在考查學生的計算能力.2、C【解析】分析:根據集合可直接求解.詳解:,,故選C點睛:集合題也是每年高考的必考內容,一般以客觀題形式出現,一般解決此類問題時要先將參與運算的集合化為最簡形式,如果是“離散型”集合可采用Venn圖法解決,若是“連續(xù)型”集合則可借助不等式進行運算.3、C【解析】

設,,,,設直線的方程為:,與拋物線方程聯(lián)立,由△得,利用韋達定理結合已知條件得,,代入上式即可求出的取值范圍.【詳解】設直線的方程為:,,,,,聯(lián)立方程,消去得:,△,,且,,,線段的中點為,,,,,,,,把代入,得,,,故選:【點睛】本題主要考查了直線與拋物線的位置關系,考查了韋達定理的應用,屬于中檔題.4、B【解析】

先利用向量數量積和三角恒等變換求出,函數在區(qū)間上恰有個極值點即為三個最值點,解出,,再建立不等式求出的范圍,進而求得的范圍.【詳解】解:令,解得對稱軸,,又函數在區(qū)間恰有個極值點,只需解得.故選:.【點睛】本題考查利用向量的數量積運算和三角恒等變換與三角函數性質的綜合問題.(1)利用三角恒等變換及輔助角公式把三角函數關系式化成或的形式;(2)根據自變量的范圍確定的范圍,根據相應的正弦曲線或余弦曲線求值域或最值或參數范圍.5、A【解析】

設,由得:,由復數相等可得的值,進而求出,即可得解.【詳解】設,由得:,即,由復數相等可得:,解之得:,則,所以,在復平面對應的點的坐標為,在第一象限.故選:A.【點睛】本題考查共軛復數的求法,考查對復數相等的理解,考查復數在復平面對應的點,考查運算能力,屬于??碱}.6、D【解析】

根據是定義是上的奇函數,滿足,可得函數的周期為3,再由奇函數的性質結合已知可得,利用周期性可得函數在區(qū)間上的零點個數.【詳解】∵是定義是上的奇函數,滿足,,可得,

函數的周期為3,

∵當時,,

令,則,解得或1,

又∵函數是定義域為的奇函數,

∴在區(qū)間上,有.

由,取,得,得,

∴.

又∵函數是周期為3的周期函數,

∴方程=0在區(qū)間上的解有共9個,

故選D.【點睛】本題考查根的存在性及根的個數判斷,考查抽象函數周期性的應用,考查邏輯思維能力與推理論證能力,屬于中檔題.7、B【解析】

利用乘法運算化簡復數即可得到答案.【詳解】由已知,,所以,解得.故選:B【點睛】本題考查復數的概念及復數的乘法運算,考查學生的基本計算能力,是一道容易題.8、D【解析】

求解一元二次不等式化簡A,求解對數不等式化簡B,然后利用補集與交集的運算得答案.【詳解】解:由x2+2x-8>0,得x<-4或x>2,

∴A={x|x2+2x-8>0}={x|x<-4或x>2},

由log2x<1,x>0,得0<x<2,

∴B={x|log2x<1}={x|0<x<2},

則,

∴.

故選:D.【點睛】本題考查了交、并、補集的混合運算,考查了對數不等式,二次不等式的求法,是基礎題.9、B【解析】

設點位于第二象限,可求得點的坐標,再由直線與直線垂直,轉化為兩直線斜率之積為可得出的值,進而可求得雙曲線的離心率.【詳解】設點位于第二象限,由于軸,則點的橫坐標為,縱坐標為,即點,由題意可知,直線與直線垂直,,,因此,雙曲線的離心率為.故選:B.【點睛】本題考查雙曲線離心率的計算,解答的關鍵就是得出、、的等量關系,考查計算能力,屬于中等題.10、C【解析】試題分析:畫出截面圖形如圖顯然A正三角形,B正方形:D正六邊形,可以畫出五邊形但不是正五邊形;故選C.考點:平面的基本性質及推論.11、D【解析】

由三視圖可知該幾何體的直觀圖是軸截面在水平面上的半個圓錐,表面積為,故選D.12、C【解析】

利用復數的除法運算法則進行化簡,再由復數模的定義求解即可.【詳解】因為,所以,由復數模的定義知,.故選:C【點睛】本題考查復數的除法運算法則和復數的模;考查運算求解能力;屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

記只雌蛙分別為,只雄蛙分別為,從中任選只牛蛙進行抽樣試驗,其基本事件為,共15個,選出的只牛蛙中至少有只雄蛙包含的基本事件為,共9個,故選出的只牛蛙中至少有只雄蛙的概率是.14、1【解析】

先畫出約束條件的可行域,根據平移法判斷出最優(yōu)點,代入目標函數的解析式,易可得到目標函數的最大值.【詳解】解:由約束條件得如圖所示的三角形區(qū)域,由于,則,要求的最大值,則求的截距的最小值,顯然當平行直線過點時,取得最大值為:.故答案為:1.【點睛】本題考查線性規(guī)劃求最值問題,我們常用幾何法求最值.15、【解析】

先把復數進行化簡,然后利用求模公式可得結果.【詳解】.故答案為:.【點睛】本題主要考查復數模的求解,利用復數的運算把復數化為的形式是求解的關鍵,側重考查數學運算的核心素養(yǎng).16、【解析】

根據題意,設,則,所以,解得,所以,從而有.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見詳解;(2)【解析】

(1)求出函數的導函數,由在處取得極值1,可得且.解出,構造函數,分析其單調性,結合,即可得到的范圍,命題得證;

(2)由分離參數,得到恒成立,構造函數,求導函數,再構造函數,進行二次求導.由知,則在上單調遞增.根據零點存在定理可知有唯一零點,且.由此判斷出時,單調遞減,時,單調遞增,則,即.由得,再次構造函數,求導分析單調性,從而得,即,最終求得,則.【詳解】解:(1)由題知,∵函數在,處取得極值1,,且,,,令,則為增函數,,即成立.(2)不等式恒成立,即不等式恒成立,即恒成立,令,則令,則,,,在上單調遞增,且,有唯一零點,且,當時,,,單調遞減;當時,,,單調遞增.,由整理得,令,則方程等價于而在上恒大于零,在上單調遞增,.,∴實數的取值范圍為.【點睛】本題考查了函數的極值,利用導函數判斷函數的單調性,函數的零點存在定理,證明不等式,解決不等式恒成立問題.其中多次構造函數,是解題的關鍵,屬于綜合性很強的難題.18、(1);(2)詳見解析;(3)詳見解析.【解析】

(1)根據,可求得,再根據是常數列代入根據通項與前項和的關系求解即可.(2)取,并結合通項與前項和的關系可求得再根據化簡可得,代入化簡即可知,再證明也成立即可.(3)由(2)當時,,代入所給的條件化簡可得,進而證明可得,即數列是等比數列.繼而求得,再根據作商法證明即可.【詳解】解:.是各項不為零的常數列,則,則由,及得,當時,,兩式作差,可得.當時,滿足上式,則;證明:,當時,,兩式相減得:即.即.又,,即.當時,,兩式相減得:.數列從第二項起是公差為的等差數列.又當時,由得,當時,由,得.故數列是公差為的等差數列;證明:由,當時,,即,,,即,即,當時,即.故從第二項起數列是等比數列,當時,..另外,由已知條件可得,又,,因而.令,則.故對任意的恒成立.【點睛】本題主要考查了等差等比數列的綜合運用,需要熟練運用通項與前項和的關系分析數列的遞推公式繼而求解通項公式或證明等差數列等.同時也考查了數列中的不等式證明等,需要根據題意分析數列為等比數列并求出通項,再利用作商法證明.屬于難題.19、(1),.(2),【解析】

(1)利用枚舉法將范數為奇數的二元有序實數對都寫出來,再做和;(2)用組合數表示和,再由公式或將組合數進行化簡,得出最終結果.【詳解】解:(1)范數為奇數的二元有序實數對有:,,,,它們的范數依次為1,1,1,1,故,.(2)當n為偶數時,在向量的n個坐標中,要使得范數為奇數,則0的個數一定是奇數,所以可按照含0個數為:1,3,…,進行討論:的n個坐標中含1個0,其余坐標為1或,共有個,每個的范數為;的n個坐標中含3個0,其余坐標為1或,共有個,每個的范數為;的n個坐標中含個0,其余坐標為1或,共有個,每個的范數為1;所以,.因為,①,②得,,所以.解法1:因為,所以..解法2:得,.又因為,所以.【點睛】本題考查了數列和組合,是一道較難的綜合題.20、(1);(2)①可能是2件;②詳見解析【解析】

(1)由一件手工藝品質量為B級的情形,并結合相互獨立事件的概率公式,列式計算即可;(2)①先求得一件手工藝品質量為D級的概率為,設10件手工藝品中不能外銷的手工藝品可能是件,可知,分別令、、,可求出使得最大的整數,進而可求出10件手工藝品中不能外銷的手工藝品的最有可能件數;②分別求出一件手工藝品質量為A、B、C、D級的概率,進而可列出X的分布列,求出期望即可.【詳解】(1)一件手工藝品質量為B級的概率為.(2)①由題意可得一件手工藝品質量為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論