2024屆上海市普陀區(qū)曹楊二中高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2024屆上海市普陀區(qū)曹楊二中高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2024屆上海市普陀區(qū)曹楊二中高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2024屆上海市普陀區(qū)曹楊二中高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2024屆上海市普陀區(qū)曹楊二中高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆上海市普陀區(qū)曹楊二中高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知等差數(shù)列的前項(xiàng)和為,,,,則的值為()A. B.C. D.2.已知等比數(shù)列的前n項(xiàng)和為,,,則()A. B.C. D.3.古希臘數(shù)學(xué)家阿波羅尼奧斯(約公元前262~公元前190年)的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,著作中有這樣一個(gè)命題:平面內(nèi)與兩定點(diǎn)距離的比為常數(shù)k(k>0且k≠1)的點(diǎn)的軌跡是圓,后人將這個(gè)圓稱為阿波羅尼斯圓.已知O(0,0),A(3,0),動(dòng)點(diǎn)P(x,y)滿,則動(dòng)點(diǎn)P軌跡與圓的位置關(guān)系是()A.相交 B.相離C.內(nèi)切 D.外切4.已知,,則的最小值為()A. B.C. D.5.如圖,在平行六面體中,,則與向量相等的是()A. B.C. D.6.某制藥廠為了檢驗(yàn)?zāi)撤N疫苗預(yù)防的作用,把名使用疫苗的人與另外名未使用疫苗的人一年中的記錄作比較,提出假設(shè):“這種疫苗不能起到預(yù)防的作用”,利用列聯(lián)表計(jì)算得,經(jīng)查對(duì)臨界值表知.則下列結(jié)論中,正確的結(jié)論是()A.若某人未使用該疫苗,則他在一年中有的可能性生病B.這種疫苗預(yù)防的有效率為C.在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“這種疫苗能起到預(yù)防的作用”D.有的把握認(rèn)為這種疫苗不能起到預(yù)防生病的作用7.已知過點(diǎn)A(a,0)作曲線C:y=x?ex的切線有且僅有兩條,則實(shí)數(shù)a的取值范圍是()A.(﹣∞,﹣4)∪(0,+∞) B.(0,+∞)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣∞,﹣1)8.《九章算術(shù)》與《幾何原本》并稱現(xiàn)代數(shù)學(xué)的兩大源泉.在《九章算術(shù)》卷五商功篇中介紹了羨除(此處是指三面為等腰梯形,其他兩側(cè)面為直角三角形的五面體)體積的求法.在如圖所示的羨除中,平面是鉛垂面,下寬,上寬,深,平面BDEC是水平面,末端寬,無深,長(zhǎng)(直線到的距離),則該羨除的體積為()A. B.C. D.9.等比數(shù)列滿足,,則()A.11 B.C.9 D.10.已知A為拋物線C:y2=2px(p>0)上一點(diǎn),點(diǎn)A到C的焦點(diǎn)的距離為12,到y(tǒng)軸的距離為9,則p=()A.2 B.3C.6 D.911.已知雙曲線,則該雙曲線的實(shí)軸長(zhǎng)為()A.1 B.2C. D.12.命題“,均有”的否定為()A.,均有 B.,使得C.,使得 D.,均有二、填空題:本題共4小題,每小題5分,共20分。13.若展開式的二項(xiàng)式系數(shù)之和是64,則展開式中的常數(shù)項(xiàng)的值是__________.14.某高中高二年級(jí)學(xué)生在學(xué)習(xí)完成數(shù)學(xué)選擇性必修一后進(jìn)行了一次測(cè)試,總分為100分.現(xiàn)用分層隨機(jī)抽樣方法從學(xué)生的數(shù)學(xué)成績(jī)中抽取一個(gè)樣本量為40的樣本,再將40個(gè)成績(jī)樣本數(shù)據(jù)分為6組:40,50),50,60),60,70),70,80),80,90),90,100,繪制得到如圖所示的頻率分布直方圖.(1)從所給的頻率分布直方圖中估計(jì)成績(jī)樣本數(shù)據(jù)眾數(shù),平均數(shù),中位數(shù);(2)在區(qū)間40,50)和90,100內(nèi)的兩組學(xué)生成績(jī)樣本數(shù)據(jù)中,隨機(jī)抽取兩個(gè)進(jìn)調(diào)查,求調(diào)查對(duì)象來自不同分組的概率.15.直線與圓相交于兩點(diǎn)M,N,若滿足,則________16.如圖所示的莖葉圖記錄了甲、乙兩組各5名工人某日的產(chǎn)量數(shù)據(jù)(單位:件).若這兩組數(shù)據(jù)的中位數(shù)相等,且平均值也相等,則x=_____________,y=_____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左焦點(diǎn)為,點(diǎn)到短袖的一個(gè)端點(diǎn)的距離為.(1)求橢圓的方程;(2)過點(diǎn)作斜率為的直線,與橢圓交于,兩點(diǎn),若,求的取值范圍.18.(12分)已知橢圓的方程為,雙曲線的左、右焦點(diǎn)分別是的左、右頂點(diǎn),而的左、右頂點(diǎn)分別是的左、右焦點(diǎn)(1)求雙曲線的方程;(2)若直線與雙曲線恒有兩個(gè)不同的交點(diǎn)和,且(其中為原點(diǎn)),求的取值范圍19.(12分)已知拋物線的頂點(diǎn)是坐標(biāo)原點(diǎn),焦點(diǎn)在軸的正半軸上,是拋物線上的點(diǎn),點(diǎn)到焦點(diǎn)的距離為1,且到軸的距離是(1)求拋物線的標(biāo)準(zhǔn)方程;(2)假設(shè)直線通過點(diǎn),與拋物線相交于,兩點(diǎn),且,求直線的方程20.(12分)已知函數(shù)(1)討論函數(shù)的單調(diào)性;(2)若,證明:21.(12分)如圖,在梯形中,,,平面,四邊形為矩形,點(diǎn)為線段的中點(diǎn),且(1)求證:平面平面;(2)若平面與平面所成銳二面角的余弦值為,則三棱錐F-ABC的體積為多少?22.(10分)已知與定點(diǎn),的距離比為的點(diǎn)P的軌跡為曲線C,過點(diǎn)的直線l與曲線C交于M,N兩點(diǎn).(1)求曲線C的軌跡方程;(2)若,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由可求得,利用可構(gòu)造方程求得.【詳解】,,,,,解得:.故選:A.2、A【解析】由,可得等比數(shù)列公比q=2,利用等比數(shù)列求和公式和通項(xiàng)公式即可求.【詳解】設(shè)等比數(shù)列的公比為q,則,.故選:A.3、A【解析】首先求得點(diǎn)的軌跡,再利用圓心距與半徑的關(guān)系,即可判斷兩圓的位置關(guān)系.【詳解】由條件可知,,化簡(jiǎn)為:,動(dòng)點(diǎn)的軌跡是以為圓心,2為半徑的圓,圓是以為圓心,為半徑的圓,兩圓圓心間的距離,所以兩圓相交.故選:A4、B【解析】將代數(shù)式展開,然后利用基本不等式可求出該代數(shù)式的最小值.【詳解】,,由基本不等式得,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.因此,的最小值為.故選B.【點(diǎn)睛】本題考查利用基本不等式求最值,在利用基本不等式時(shí)要注意“一正、二定、三相等”條件的成立,考查計(jì)算能力,屬于中等題.5、A【解析】根據(jù)空間向量的線性運(yùn)算法則——三角形法,準(zhǔn)確運(yùn)算,即可求解.【詳解】由題意,在平行六面體中,,可得.故選:A.6、C【解析】根據(jù)的值與臨界值的大小關(guān)系進(jìn)行判斷.【詳解】∵,,∴在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“這種疫苗能起到預(yù)防的作用”,C對(duì),由已知數(shù)據(jù)不能確定若某人未使用該疫苗,則他在一年中有的可能性生病,A錯(cuò),由已知數(shù)據(jù)不能判斷這種疫苗預(yù)防的有效率為,B錯(cuò),由已知數(shù)據(jù)沒有的把握認(rèn)為這種疫苗不能起到預(yù)防生病的作用,D錯(cuò),故選:C.7、A【解析】設(shè)出切點(diǎn),對(duì)函數(shù)求導(dǎo)得到切點(diǎn)處的斜率,由點(diǎn)斜式得到切線方程,化簡(jiǎn)為,整理得到方程有兩個(gè)解即可,解出不等式即可.【詳解】設(shè)切點(diǎn)為,,,則切線方程為:,切線過點(diǎn)代入得:,,即方程有兩個(gè)解,則有或.故答案為:A.【點(diǎn)睛】這個(gè)題目考查了函數(shù)的導(dǎo)函數(shù)的求法,以及過某一點(diǎn)的切線方程的求法,其中應(yīng)用到導(dǎo)數(shù)的幾何意義,一般過某一點(diǎn)求切線方程的步驟為:一:設(shè)切點(diǎn),求導(dǎo)并且表示在切點(diǎn)處的斜率;二:根據(jù)點(diǎn)斜式寫切點(diǎn)處的切線方程;三:將所過的點(diǎn)代入切線方程,求出切點(diǎn)坐標(biāo);四:將切點(diǎn)代入切線方程,得到具體的表達(dá)式.8、C【解析】在,上分別取點(diǎn),,使得,連接,,,把幾何體分割成一個(gè)三棱柱和一個(gè)四棱錐,然后由棱柱、棱錐體積公式計(jì)算【詳解】如圖,在,上分別取點(diǎn),,使得,連接,,,則三棱柱是斜三棱柱,該羨除的體積三棱柱四棱錐.故選:C【點(diǎn)睛】思路點(diǎn)睛:本題考查求空間幾何體的體積,解題思路是觀察幾何體的結(jié)構(gòu)特征,合理分割,將不規(guī)則幾何體體積的計(jì)算轉(zhuǎn)化為錐體、柱體體積的計(jì)算.考查了空間想象能力、邏輯思維能力、運(yùn)算求解能力9、B【解析】由已知結(jié)合等比數(shù)列的性質(zhì)即可求解.【詳解】由數(shù)列是等比數(shù)列,得:,故選:B10、C【解析】利用拋物線的定義建立方程即可得到答案.【詳解】設(shè)拋物線的焦點(diǎn)為F,由拋物線的定義知,即,解得.故選:C.【點(diǎn)晴】本題主要考查利用拋物線的定義計(jì)算焦半徑,考查學(xué)生轉(zhuǎn)化與化歸思想,是一道容易題.11、B【解析】根據(jù)給定的雙曲線方程直接計(jì)算即可作答.【詳解】雙曲線的實(shí)半軸長(zhǎng),所以該雙曲線的實(shí)軸長(zhǎng)為2.故選:B12、C【解析】全稱命題的否定是特稱命題【詳解】根據(jù)全稱命題的否定是特稱命題,所以命題“,均有”的否定為“,使得”故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】首先利用展開式的二項(xiàng)式系數(shù)和是求出,然后即可求出二項(xiàng)式的常數(shù)項(xiàng).【詳解】由題知展開式的二項(xiàng)式系數(shù)之和是,故有,可得,知當(dāng)時(shí)有.故展開式中的常數(shù)項(xiàng)為.故答案為:.【點(diǎn)睛】本題考查了利用二項(xiàng)式的系數(shù)和求參數(shù),求二項(xiàng)式的常數(shù)項(xiàng),屬于基礎(chǔ)題.14、(1)眾數(shù);平均數(shù),中位數(shù).(2).【解析】(1)按“眾數(shù),平均數(shù),中位數(shù)”的公式求解.(2)由頻率分布直方圖得到各區(qū)間的頻率,再用古典概型求解.【小問1詳解】眾數(shù)取頻率分布直方圖中最高矩形對(duì)應(yīng)區(qū)間的中點(diǎn)75;平均數(shù);因?yàn)?,所以中位?shù)在區(qū)間上,且中位數(shù)【小問2詳解】由頻率分布直方圖得出在區(qū)間40,50)和90,100內(nèi)的成績(jī)樣本數(shù)據(jù)分別有4個(gè)和2個(gè),從6個(gè)樣本選2個(gè)共有個(gè)結(jié)果,記事件A=“調(diào)查對(duì)象來自不同分組”,結(jié)果有所以.15、【解析】由點(diǎn)到直線的距離公式,結(jié)合已知可得圓心到直線的距離,再由圓的弦長(zhǎng)公式可得,然后可解.【詳解】因?yàn)?,所以,所以,圓心到直線的距離因?yàn)?,所以,所以故答案為?6、①.3②.5【解析】根據(jù)莖葉圖進(jìn)行數(shù)據(jù)分析,列方程求出x、y.【詳解】由題意,甲組數(shù)據(jù)為56,62,65,70+x,74;乙組數(shù)據(jù)為59,61,67,60+y,78.要使兩組數(shù)據(jù)中位數(shù)相等,有65=60+y,所以y=5.又平均數(shù)相同,則,解得x=3.故答案為:3;5.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)根據(jù)焦點(diǎn)坐標(biāo)可得,根據(jù)點(diǎn)到短袖一個(gè)端點(diǎn)的距離為,然后根據(jù)即可;(2)先設(shè)聯(lián)立直線與橢圓的方程,然后根據(jù)韋達(dá)定理得到,兩點(diǎn)的坐標(biāo)關(guān)系,然后根據(jù)建立關(guān)于直線的斜率的不等式,解出不等式即可.【小問1詳解】根據(jù)題意,已知橢圓的左焦點(diǎn)為,則有:點(diǎn)到短袖一個(gè)端點(diǎn)的距離為,則有:則有:故橢圓的方程為:【小問2詳解】設(shè)過點(diǎn)作斜率為的直線的方程為:聯(lián)立直線與橢圓的方程可得:則有:,直線過點(diǎn),所以恒成立,不妨設(shè),兩點(diǎn)的坐標(biāo)分別為:,則有:又且則有:將,代入后可得:若,則有:解得:或18、(1);(2)【解析】(1)求出橢圓的焦點(diǎn)和頂點(diǎn),即得雙曲線的頂點(diǎn)和焦點(diǎn),從而易求得標(biāo)準(zhǔn)方程;(2)將代入,得由直線與雙曲線交于不同的兩點(diǎn),得的取值范圍,設(shè),由韋達(dá)定理得則代入可求得的范圍【詳解】(1)設(shè)雙曲線的方程為,則,再由,得故的方程為(2)將代入,得由直線與雙曲線交于不同的兩點(diǎn),得①設(shè)則又,得,,即,解得②由①②得<k2<1,故的取值范圍【點(diǎn)睛】本題考查雙曲線的標(biāo)準(zhǔn)方程,考查直線與雙曲線相交中的范圍問題.應(yīng)注意:(1)利用圓錐曲線的幾何性質(zhì)或判別式構(gòu)造不等關(guān)系,從而確定參數(shù)的取值范圍(2)利用已知參數(shù)的范圍,求新參數(shù)的范圍,解這類問題的核心是建立兩個(gè)參數(shù)之間的等量關(guān)系(3)利用隱含的不等關(guān)系建立不等式,從而求出參數(shù)的取值范圍(4)利用已知的不等關(guān)系構(gòu)造不等式,從而求出參數(shù)的取值范圍(5)利用求函數(shù)的值域的方法將待求量表示為其他變量的函數(shù),求其值域,從而確定參數(shù)的取值范圍19、(1);(2)【解析】(1)根據(jù)拋物線的定義,結(jié)合到焦點(diǎn)、軸的距離求,寫出拋物線方程.(2)直線的斜率不存在易得與不垂直與題設(shè)矛盾,設(shè)直線方程聯(lián)立拋物線方程,應(yīng)用韋達(dá)定理求,,進(jìn)而求,由題設(shè)向量垂直的坐標(biāo)表示有求直線方程即可.【詳解】(1)由己知,可設(shè)拋物線的方程為,又到焦點(diǎn)的距離是1,∴點(diǎn)到準(zhǔn)線的距離是1,又到軸的距離是,∴,解得,則拋物線方程是(2)假設(shè)直線的斜率不存在,則直線的方程為,與聯(lián)立可得交點(diǎn)、的坐標(biāo)分別為,,易得,可知直線與直線不垂直,不滿足題意,故假設(shè)不成立,∴直線的斜率存在.設(shè)直線為,整理得,設(shè),,聯(lián)立直線與拋物線的方程得,消去,并整理得,于是,,∴,又,因此,即,∴,解得或當(dāng)時(shí),直線的方程是,不滿足,舍去當(dāng)時(shí),直線的方程是,即,∴直線的方程是20、(1)當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;(2)見詳解【解析】(1)對(duì)函數(shù)進(jìn)行求導(dǎo),然后根據(jù)參數(shù)進(jìn)行分類討論;(2)構(gòu)造函數(shù),求函數(shù)的最小值即可證出.【詳解】(1)的定義域?yàn)椋?當(dāng)時(shí),在上恒成立,所以在上單調(diào)遞增;當(dāng)時(shí),時(shí),;時(shí),,所以在上單調(diào)遞減,在上單調(diào)遞增.綜上所述,當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增.(2)當(dāng)時(shí),.令,,則.,令,.恒成立,所以在上單調(diào)遞增.因?yàn)?,,所以存在唯一的,使得,?①當(dāng)時(shí),,即,所以在上單調(diào)遞減;當(dāng)時(shí),,即,所以在上單調(diào)遞增.所以,,②方法一:把①代入②得,.設(shè),.則恒成立,所以在上單調(diào)遞減,所以.因?yàn)?,所以,即,所以,所以時(shí),.方法二:設(shè),.則,所以在上單調(diào)遞增,所以,所以.因?yàn)?,所以,所以,所以時(shí),.【點(diǎn)睛】不等式證明問題是近年高考命題的熱點(diǎn),利用導(dǎo)數(shù)證明不等式的方法主要有兩個(gè):(1)不等式兩邊作差構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出函數(shù)最值即可;(2)觀察不等式的特點(diǎn),結(jié)合已解答問題把要證的不等式變形,并運(yùn)用已證結(jié)論先行放縮,再

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論