




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
安徽省蒙城二中2023-2024學(xué)年數(shù)學(xué)高二上期末學(xué)業(yè)水平測試模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,且,則實數(shù)的值為()A. B.3C.4 D.62.若點P是曲線上任意一點,則點P到直線的最小距離為()A.0 B.C. D.3.設(shè)橢圓C:的左、右焦點分別為、,P是C上的點,⊥,∠=,則C的離心率為A. B.C. D.4.命題P:ax2+2x﹣1=0有實數(shù)根,若¬p是假命題,則實數(shù)a的取值范圍是()A.{a|a<1} B.{a|a≤﹣1}C.{a|a≥﹣1} D.{a|a>﹣1}5.“”是“方程表示焦點在x軸上的橢圓”的()A.充要條件 B.必要而不充分條件C.充分而不必要條件 D.既不充分也不必要條件6.已知直線l的方向向量,平面α的一個法向量為,則直線l與平面α的位置關(guān)系是()A.平行 B.垂直C.在平面內(nèi) D.平行或在平面內(nèi)7.已知,則“”是“直線與平行”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.如圖,在空間四邊形中,()A. B.C. D.9.如圖,在平行六面體中,M為與的交點,若,,,則下列向量中與相等的向量是()A. B.C. D.10.下面四個說法中,正確說法的個數(shù)為()(1)如果兩個平面有三個公共點,那么這兩個平面重合;(2)兩條直線可以確定一個平面;(3)若,,,則;(4)空間中,兩兩相交的三條直線在同一平面內(nèi).A.1 B.2C.3 D.411.下列說法中正確的是A.命題“若,則”的逆命題為真命題B.若為假命題,則均為假命題C.若為假命題,則為真命題D.命題“若兩個平面向量滿足,則不共線”的否命題是真命題.12.已知點、為橢圓的左、右焦點,若點為橢圓上一動點,則使得的點的個數(shù)為()A. B.C. D.不能確定二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的準(zhǔn)線方程是________14.直線l過拋物線的焦點F,且l與該拋物線交于不同的兩點,.若,則弦AB的長是____15.已知點在圓C:()內(nèi),過點M的直線被圓C截得的弦長最小值為8,則______16.若復(fù)數(shù)滿足,則_____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在直三棱柱中,,,D為的中點(1)求證:平面;(2)求平面與平面的夾角的余弦值;(3)若E為的中點,求與所成的角18.(12分)函數(shù).(1)當(dāng)時,解不等式;(2)若不等式對任意恒成立,求實數(shù)a的取值范圍.19.(12分)如圖,在三棱柱中,側(cè)棱垂直于底面,分別是的中點(1)求證:平面平面;(2)求證:平面;(3)求三棱錐體積20.(12分)數(shù)列的前n項和為,(1)求數(shù)列的通項公式;(2)令,求數(shù)列的前n項和21.(12分)設(shè)分別為橢圓的左右焦點,過的直線l與橢圓C相交于A,B兩點,直線的傾斜角為60度,到直線l的距離為(1)求橢圓C的焦距;(2)如果,求橢圓C的方程22.(10分)已知數(shù)列滿足,.(1)求證數(shù)列是等差數(shù)列,并求通項公式;(2)已知數(shù)列的前項和為,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)給定條件利用空間向量垂直的坐標(biāo)表示計算作答.詳解】因,且,則有,解得,所以實數(shù)的值為3.故選:B2、D【解析】由導(dǎo)數(shù)的幾何意義求得曲線上與直線平行的切線方程的切線坐標(biāo),求出切點到直線的距離即為所求最小距離【詳解】點是曲線上的任意一點,設(shè),令,解得1或(舍去),,∴曲線上與直線平行的切線的切點為,點到直線的最小距離.故選:D.3、D【解析】詳解】由題意可設(shè)|PF2|=m,結(jié)合條件可知|PF1|=2m,|F1F2|=m,故離心率e=選D.點睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關(guān)鍵就是確立一個關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點的坐標(biāo)的范圍等.4、C【解析】根據(jù)是假命題,判斷出是真命題.對分成,和兩種情況,結(jié)合方程有實數(shù)根,求得的取值范圍.詳解】┐p是假命題,則p是真命題,∴ax2+2x﹣1=0有實數(shù)根,當(dāng)a=0時,方程為2x﹣1=0,解得x=0.5,有根,符合題意;當(dāng)a≠0時,方程有根,等價于△=4+4a≥0,∴a≥﹣1且,綜上所述,a的可能取值為a≥﹣1故選:C【點睛】本小題主要考查根據(jù)命題否定的真假性求參數(shù),屬于基礎(chǔ)題.5、A【解析】由橢圓的標(biāo)準(zhǔn)方程結(jié)合充分必要條件的定義即得.【詳解】若,則方程表示焦點在軸上的橢圓;反之,若方程表示焦點在軸上的橢圓,則;所以“”是“方程表示焦點在x軸上的橢圓”的充要條件.故選:A.6、D【解析】根據(jù)題意,結(jié)合線面位置關(guān)系的向量判斷方法,即可求解.【詳解】根據(jù)題意,因為,所以,所以直線l與平面α的位置關(guān)系是平行或在平面內(nèi)故選:D7、A【解析】首先由兩直線平行的充要條件求出參數(shù)的取值,再根據(jù)充分條件、必要條件的定義判斷即可;【詳解】因為直線與平行,所以,解得或,所以“”是“直線與平行”的充分不必要條件.故選:A.8、A【解析】利用空間向量加減法法則直接運算即可.【詳解】根據(jù)向量的加法、減法法則得.故選:A.9、A【解析】利用空間向量的三角形法則可得,結(jié)合平行六面體的性質(zhì)分析解答【詳解】平行六面體中,M為與的交點,,,,則有:,所以.故選:A10、A【解析】如果兩個平面有三個公共點,那么這兩個平面重合或者是相交,即可判斷;利用兩條異面直線不能確定一個平面即可判斷;利用平面的基本性質(zhì)中的公理判斷即可;若兩兩相交的三條直線相交于同一點,則相交于同一點的三直線不一定在同一平面內(nèi)(如棱錐的3條側(cè)棱),即可判斷.【詳解】如果兩個平面有三個公共點,那么這兩個平面重合或者是相交,故(1)不正確;兩條異面直線不能確定一個平面,故(2)不正確;利用平面的基本性質(zhì)中的公理判斷(3)正確;空間中,若兩兩相交的三條直線相交于同一點,則相交于同一點的三直線不一定在同一平面內(nèi)(如棱錐的3條側(cè)棱),故(4)不正確,綜上所述只有一個說法是正確的,故選:A【點睛】本題主要考查了空間中點,線,面的位置關(guān)系.屬于較易題.11、D【解析】A中,利用四種命題的的真假判斷即可;B、C中,命題“”為假命題時,、至少有一個為假命題;D中,寫出該命題的否命題,再判斷它的真假性【詳解】對于A,命題“若,則”的逆命題是:若,則;因為也成立.所以A不正確;對于B,命題“”為假命題時,、至少有一個為假命題,所以B錯誤;C錯誤;對于D,“平面向量滿足”,則不共線的否命題是,若“平面向量滿足”,則共線;由知:,一定有,,所以共線,D正確.故選:D.【點睛】本題考查了命題的真假性判斷問題,也考查了推理與判斷能力,是基礎(chǔ)題12、B【解析】利用余弦定理結(jié)合橢圓的定義可求得、,即可得出結(jié)論.【詳解】在橢圓中,,,,則,,可得,所以,,解得,此時點位于橢圓短軸的頂點.因此,滿足條件的點的個數(shù)為.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】將拋物線方程化為標(biāo)準(zhǔn)形式,從而得到準(zhǔn)線方程.【詳解】拋物線方程可化為:拋物線準(zhǔn)線方程為:故答案為【點睛】本題考查拋物線準(zhǔn)線的求解,易錯點是未將拋物線方程化為標(biāo)準(zhǔn)方程.14、4【解析】由題意得,再結(jié)合拋物線的定義即可求解.【詳解】由題意得,由拋物線的定義知:,故答案為:4.15、【解析】根據(jù)點與圓的位置關(guān)系,可求得r的取值范圍,再利用過圓內(nèi)一點最短的弦,結(jié)合弦長公式可得到關(guān)于r的方程,求解即可.【詳解】由點在圓C:內(nèi),且所以,又,解得過圓內(nèi)一點最短的弦,應(yīng)垂直于該定點與圓心的連線,即圓心到直線的距離為又,所以,解得故答案為:16、【解析】設(shè),則,利用復(fù)數(shù)相等,求出,的值,結(jié)合復(fù)數(shù)的模長公式進行計算即可【詳解】設(shè),則,則由得,即,則,得,則,故答案為【點睛】本題主要考查復(fù)數(shù)模長的計算,利用待定系數(shù)法,結(jié)合復(fù)數(shù)相等求出復(fù)數(shù)是解決本題的關(guān)鍵三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)(3)【解析】(1)連接,交于O,連接OD,根據(jù)中位線的性質(zhì),可證,根據(jù)線面平行的判定定理,即可得證;(2)如圖建系,求得各點坐標(biāo),進而可求得平面與平面法向量,根據(jù)二面角的向量求法,即可得答案;(3)求得坐標(biāo),根據(jù)線線角的向量求法,即可得答案.【小問1詳解】連接,交于O,連接OD,則O為的中點,在中,因為O、D分別為、BC中點,所以,又因為平面,平面,所以平面【小問2詳解】由題意得,兩兩垂直,以B為原點,為x,y,z軸正方向建系,如圖所示:設(shè),則,所以,則,,因為平面在平面ABC內(nèi),且平面ABC,所以即為平面的一個法向量,設(shè)平面的一個法向量為,則,所以,令,則,所以法向量,所以,由圖象可得平面與平面的夾角為銳角,所以平面與平面的夾角的余弦值為【小問3詳解】由(2)可得,設(shè)與所成的角為,則,解得,所以與所成的角為18、(1);(2).【解析】(1)由題設(shè),原不等式等價于,分類討論即可得出結(jié)論;(2)不等式對任意恒成立,即,即可求實數(shù)a的取值范圍.【詳解】(1)當(dāng)時,原不等式等價于,當(dāng)時,,解得,即;當(dāng)時,恒成立,即;當(dāng)時,,解得,即;綜上,不等式的解集為;(2),,即或,解得,∴a取值范圍是.19、(1)證明見解析;(2)證明見解析;(3)【解析】(1)由直線與平面垂直證明直線與平行的垂直;(2)證明直線與平面平行;(3)求三棱錐的體積就用體積公式.(1)在三棱柱中,底面ABC,所以AB,又因為AB⊥BC,所以AB⊥平面,因為AB平面,所以平面平面.(2)取AB中點G,連結(jié)EG,F(xiàn)G,因為E,F(xiàn)分別是、的中點,所以FG∥AC,且FG=AC,因為AC∥,且AC=,所以FG∥,且FG=,所以四邊形為平行四邊形,所以EG,又因為EG平面ABE,平面ABE,所以平面.(3)因為=AC=2,BC=1,AB⊥BC,所以AB=,所以三棱錐的體積為:==.考點:本小題主要考查直線與直線、直線與平面、平面與平面的垂直與平行的證明;考查幾何體的體積的求解等基礎(chǔ)知識,考查同學(xué)們的空間想象能力、推理論證能力、運算求解能力、邏輯推理能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想20、(1);(2).【解析】(1)根據(jù)給定條件結(jié)合“當(dāng)時,”計算作答.(2)由(1)求出,利用裂項相消法計算得解.【小問1詳解】數(shù)列的前n項和為,,當(dāng)時,,當(dāng)時,,滿足上式,則,所以數(shù)列的通項公式是【小問2詳解】由(1)知,,所以,所以數(shù)列的前n項和21、(1)(2)【解析】(1)求得直線的方程,利用點到直線的距離列方程,由此求得,進而求得焦距.(2)聯(lián)立直線的方程和橢圓方程,化簡寫出根與系數(shù)關(guān)系,結(jié)合來求得,從而求得橢圓的方程.【小問1詳解】依題意,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 沈陽航空航天大學(xué)北方科技學(xué)院《網(wǎng)頁制作與網(wǎng)站開發(fā)實驗》2023-2024學(xué)年第二學(xué)期期末試卷
- 山西中醫(yī)藥大學(xué)《凈水處理工藝與工程》2023-2024學(xué)年第二學(xué)期期末試卷
- 西安科技大學(xué)《國際營銷概論》2023-2024學(xué)年第二學(xué)期期末試卷
- 新疆師范大學(xué)《現(xiàn)代傳感技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 遼寧師范大學(xué)海華學(xué)院《經(jīng)濟學(xué)世界經(jīng)濟》2023-2024學(xué)年第二學(xué)期期末試卷
- 2024年高純金屬及氧化物資金需求報告代可行性研究報告
- 三年級法制教育基礎(chǔ)認(rèn)知
- 2025年浙江杭州大江東國有資本投資管理有限公司招聘筆試參考題庫含答案解析
- 娛樂空間設(shè)計市場調(diào)研
- 2025年陜西省中小企業(yè)融資擔(dān)保有限公司招聘筆試參考題庫附帶答案詳解
- 《李煜詩詞鑒賞:以〈虞美人〉為例》名師課件1
- 變電站新建工程三通一平場地平整施工方案
- 廣鐵招聘機考題庫
- 牛羊肉采購合同范本
- DLT 5434-2021 電力建設(shè)工程監(jiān)理規(guī)范表格
- 拓展低空經(jīng)濟應(yīng)用場景實施方案
- 建材環(huán)保承諾綠色建筑承諾書
- 七年級期中考試后家長會-圖文課件
- 托育機構(gòu)消防安全培訓(xùn)
- HY/T 0386-2023赤潮災(zāi)害損失調(diào)查與評估指南
- 《現(xiàn)代庫存管理:模型、算法與Python實現(xiàn)》 課件全套 楊超林 第1-17章 現(xiàn)代庫存管理概述-某家電企業(yè)H的制造網(wǎng)絡(luò)庫存優(yōu)化實戰(zhàn)
評論
0/150
提交評論