版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
福建省廈門市廈門第一中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)等差數(shù)列前n項和是,若,則的通項公式可以是()A. B.C. D.2.瑞士著名數(shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心位于同一直線上,這條直線被后人稱為三角形的“歐拉線”.若滿足,頂點,且其“歐拉線”與圓相切,則:①.圓M上的點到原點的最大距離為②.圓M上存在三個點到直線的距離為③.若點在圓M上,則的最小值是④.若圓M與圓有公共點,則上述結(jié)論中正確的有()個A.1 B.2C.3 D.43.已知命題:,,命題:,,則()A.是假命題 B.是真命題C.是真命題 D.是假命題4.設(shè)F是雙曲線的左焦點,,P是雙曲線右支上的動點,則的最小值為()A.5 B.C. D.95.已知直線與直線平行,則實數(shù)a值為()A.1 B.C.1或 D.6.設(shè)拋物線的焦點為F,準(zhǔn)線為l,P為拋物線上一點,,A為垂足.如果直線AF的斜率是,那么()A B.C.16 D.87.如果,那么下面一定成立的是()A. B.C. D.8.已知是偶函數(shù)的導(dǎo)函數(shù),.若時,,則使得不等式成立的的取值范圍是()A. B.C. D.9.如圖,正三棱柱中,,則與平面所成角的正弦值等于()A. B.C. D.10.已知雙曲線的一條漸近線方程為,且與橢圓有公共焦點.則C的方程為()A. B.C. D.11.函數(shù)極小值為()A. B.C. D.12.橢圓的一個焦點坐標(biāo)為,則()A.2 B.3C.4 D.8二、填空題:本題共4小題,每小題5分,共20分。13.兩個人射擊,互相獨立.已知甲射擊一次中靶概率是0.6,乙射擊一次中靶概率是0.3,現(xiàn)在兩人各射擊一次,中靶至少一次就算完成目標(biāo),則完成目標(biāo)的概率為_____________14.若滿足約束條件,則的最小值為________.15.如圖,在長方體中,,,則直線與平面所成角的正弦值為__________.16.某中學(xué)擬從4月16號至30號期間,選擇連續(xù)兩天舉行春季運動會,從已往的氣象記錄中隨機抽取一個年份,記錄天氣結(jié)果如下:日期161718192021222324252627282930天氣晴陰雨陰陰晴陰晴雨雨陰晴晴晴雨估計運動會期間不下雨的概率為_____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),(1)討論的單調(diào)性;(2)若時,對任意都有恒成立,求實數(shù)的最大值18.(12分)如圖,四邊形是矩形,平面平面,為中點,,,(1)證明:平面平面;(2)求二面角的余弦值19.(12分)如圖,在梯形中,,,平面,四邊形為矩形,點為線段的中點,且(1)求證:平面平面;(2)若平面與平面所成銳二面角的余弦值為,則三棱錐F-ABC的體積為多少?20.(12分)如圖,已知正方體的棱長為,,分別是棱與的中點.(1)求以,,,為頂點的四面體的體積;(2)求異面直線和所成角的大小.21.(12分)已知函數(shù)滿足.(1)求的解析式,并判斷其奇偶性;(2)若對任意,不等式恒成立,求實數(shù)a的取值范圍.22.(10分)等差數(shù)列的公差d不為0,滿足成等比數(shù)列,數(shù)列滿足.(1)求數(shù)列與通項公式:(2)若,求數(shù)列的前n項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)題意可得公差的范圍,再逐一分析各個選項即可得出答案.【詳解】解:設(shè)等差數(shù)列的公差為,由,得,所以,故AB錯誤;若,則,與題意矛盾,故C錯誤;若,則,符合題意.故選:D.2、A【解析】由題意求出的垂直平分線可得△的歐拉線,再由圓心到直線的距離求得,得到圓的方程,求出圓心到原點的距離,加上半徑判斷A;求出圓心到直線的距離判斷B;再由的幾何意義,即圓上的點與定點連線的斜率判斷C;由兩個圓有公共點可得圓心距與兩個半徑之間的關(guān)系,求得的取值范圍判斷D【詳解】由題意,△的歐拉線即的垂直平分線,,,的中點坐標(biāo)為,,則的垂直平分線方程為,即由“歐拉線”與圓相切,到直線的距離,,則圓的方程為:,圓心到原點的距離為,則圓上的點到原點的最大距離為,故①錯誤;圓心到直線的距離為,圓上存在三個點到直線的距離為,故②正確;的幾何意義:圓上的點與定點連線的斜率,設(shè)過與圓相切的直線方程為,即,由,解得,的最小值是,故③錯誤;的圓心坐標(biāo),半徑為,圓的的圓心坐標(biāo)為,半徑為,要使圓與圓有公共點,則圓心距的范圍為,,,解得,故④錯誤故選:A3、C【解析】先分別判斷命題、的真假,再利用邏輯聯(lián)結(jié)詞“或”與“且”判斷命題的真假.【詳解】由題意,,所以,成立,即命題為真命題,,所以不存在,使得,即命題為假命題,所以是假命題,為真命題,所以是真命題,是假命題,是假命題,是真命題.故選:C4、B【解析】由雙曲線的的定義可得,于是將問題轉(zhuǎn)化為求的最小值,由得出答案.【詳解】設(shè)雙曲線的由焦點為,且點A在雙曲線的兩支之間.由雙曲線的定義可得,即所以當(dāng)且僅當(dāng)三點共線時,取得等號.故選:B5、A【解析】根據(jù)兩直線平行的條件列方程,化簡求得,檢驗后確定正確答案.【詳解】由于直線與直線平行,所以,或,當(dāng)時,兩直線方程都為,即兩直線重合,所以不符合題意.經(jīng)檢驗可知符合題意.故選:A6、D【解析】由題可得方程,進而可得點坐標(biāo)及點坐標(biāo),利用拋物線定義即求【詳解】∵拋物線方程為,∴焦點F(2,0),準(zhǔn)線l方程為x=?2,∵直線AF的斜率為,直線AF的方程為,由,可得,∵PA⊥l,A為垂足,∴P點縱坐標(biāo)為,代入拋物線方程,得P點坐標(biāo)為,∴.故選:D.7、C【解析】根據(jù)不等式的基本性質(zhì),以及特例法和作差比較法,逐項計算,即可求解.【詳解】對于A中,當(dāng)時,,所以不正確;對于B中,因為,根據(jù)不等式的性質(zhì),可得,對于C中,由,可得可得,所以,所以正確;對于D中,由,可得,則,所以,所以不正確.故選:C.8、C【解析】構(gòu)造函數(shù),分析函數(shù)在上的單調(diào)性,將所求不等式變形為,可得出關(guān)于的不等式,即可得解.【詳解】構(gòu)造函數(shù),其中,則,所以,函數(shù)為上的奇函數(shù),當(dāng)時,,且不恒為零,所以,函數(shù)在上為增函數(shù),且該函數(shù)在上也為增函數(shù),故函數(shù)在上為增函數(shù),因為,則,由得,可得,解得故選:C.9、C【解析】取中點,連接,,證明平面,從而可得為與平面所成角,再利用三角函數(shù)計算的正弦值.【詳解】取中點,連接,,在正三棱柱中,底面是正三角形,∴,又∵底面,∴,又,∴平面,∴為與平面所成角,由題意,,,在中,.故選:C10、B【解析】根據(jù)已知和漸近線方程可得,雙曲線焦距,結(jié)合的關(guān)系,即可求出結(jié)論.【詳解】因為雙曲線的一條漸近線方程為,則①.又因為橢圓與雙曲線有公共焦點,雙曲線的焦距,即c=3,則a2+b2=c2=9②.由①②解得a=2,b=,則雙曲線C的方程為.故選:B.11、A【解析】利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,可求得該函數(shù)的極小值.【詳解】對函數(shù)求導(dǎo)得,令,可得或,列表如下:減極小值增極大值減所以,函數(shù)的極小值為.故選:A.12、D【解析】由條件可得,,,,由關(guān)系可求值.【詳解】∵橢圓方程為:,∴,∴,,∵橢圓的一個焦點坐標(biāo)為,∴,又,∴,∴,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、72【解析】利用獨立事件的概率乘法公式和對立事件的概率公式可求得所求事件的概率.【詳解】由題意可知,若甲、乙兩個各射擊1次,至少有一人命中目標(biāo)的概率為.故答案為:14、5【解析】作出可行域,作直線,平移該直線可得最優(yōu)解【詳解】作出可行域,如圖內(nèi)部(含邊界),作直線,直線中是直線的縱截距,代入得,即平移直線,當(dāng)直線過點時取得最小值5故答案為:515、##【解析】過作,垂足為,則平面,則即為所求角,從而可得結(jié)果.【詳解】依題意,畫出圖形,如圖,過作,垂足為,可知點H為中點,由平面,可得,又所以平面,則即為所求角,因為,,所以,故答案為:.16、【解析】以每相鄰兩天為一個基本事件,求出試驗的基本事件數(shù),再求出兩天都不下雨的基本事件數(shù),利用古典概率公式計算作答.【詳解】依題意,以每相鄰兩天為一個基本事件,如16號與17號、17號與18號為不同的兩個基本事件,則從4月16號至30號期間,共有14個基本事件,它們等可能,其中相鄰兩天不下雨有16與17,19與20,20與21,21與22,22與23,26與27,27與28,28與29,共8個不同結(jié)果,所以運動會期間不下雨的概率為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)答案見解析;(2).【解析】(1)利用導(dǎo)數(shù)與單調(diào)性的關(guān)系分類討論即得;(2)由題可得在上恒成立,構(gòu)造函數(shù),利用導(dǎo)數(shù)求函數(shù)的最值即可.【小問1詳解】的定義域為,且當(dāng)時,顯然,在定義域上單調(diào)遞增;當(dāng)時,令,得則有:極大值即在上單調(diào)遞增,在上單調(diào)遞減,綜上所述,當(dāng)時,在定義域上單調(diào)遞增;當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減.【小問2詳解】當(dāng)時,,對于滿足恒成立,在上恒成立,令,只需∴,,,令,則,在上單調(diào)遞增,又,,存在唯一的,使得,即,兩邊取自然對數(shù)得,極小值,則的最大值為18、(1)證明見解析;(2)【解析】(1)利用面面垂直的性質(zhì),證得平面,進而可得,平面即可得證;(2)在平面ABC內(nèi)過點A作Ax⊥AB,以A為原點建立空間直角坐標(biāo)系,借助空間向量而得解.【詳解】(1)因為,為中點,所以,因為是矩形,所以,因為平面平面,平面平面,平面,所以平面,因為平面,所以,又,平面,,所以平面,又平面,所以平面平面;(2)在平面ABC內(nèi)過點A作Ax⊥AB,由(1)知,平面,故以點A為坐標(biāo)原點,分別以,,的方向為軸,軸,軸的正方向,建立空間直角坐標(biāo)系,如圖:則,,,,,則,所以,,,,由(1)知,為平面的一個法向量,設(shè)平面的法向量為,則,即,令,則,,所以,所以,因為二面角為銳角,則二面角的余弦值為.【點睛】思路點睛:二面角大小求解時要注意結(jié)合實際圖形判斷所求角是銳角還是鈍角19、(1)證明見解析;(2)【解析】(1)先證線面垂直,再證面面垂直即可解決;(2)建立空間直角坐標(biāo)系,以向量法去求平面與平面所成銳二面角的余弦值,列方程解得的長度,即可求得三棱錐F-ABC的體積.【小問1詳解】在梯形中,,,,所以,,又,所以,所以,又所以,即又平面,平面,所以,又,,平面,所以平面,即平面又平面,則平面平面【小問2詳解】由(1)知,,兩兩垂直,以為坐標(biāo)原點,分別以直線,,為軸、軸、軸建立空間直角坐標(biāo)系因為,,所以,令則,,,所以,設(shè)為平面的一個法向量,由,得解得,取,則,又是平面的一個法向量.設(shè)平面與平面所成銳二面角為,則,即解之得,又,故即20、(1)(2)【解析】(1)由題意可知該四面體為以為底面,以為高的四面體,可得四面體體積;(2)連接,,可得即為異面直線和所成的角的平面角,根據(jù)余弦定理可得角的大小.【小問1詳解】解:連接,,,以,,,為頂點的四面體即為三棱錐,底面的面積,高,則其體積;【小問2詳解】解:連接,,,則即為異面直線和所成的角的平面角,在中,,,,則,故,即和所成的角的的大小為.21、(1),是奇函數(shù)(2)【解析】(1)由求出,進而求得的解析式,利用奇偶函數(shù)的定義判斷函數(shù)的奇偶性即可;(2)根據(jù)冪函數(shù)的單調(diào)性可得函數(shù)的單調(diào)性,求出函數(shù)的最小值,將不等式恒成立轉(zhuǎn)化為對任意使得恒成立即可.【小問1詳解】因為,所以,所以.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 銀行貸款進貨合同(2篇)
- 2024-2025學(xué)年初中同步測控優(yōu)化設(shè)計物理八年級下冊配人教版第11章 第4節(jié) 機械能及其轉(zhuǎn)化含答案
- 荷花 作文 課件
- 西京學(xué)院《中國文化經(jīng)典選讀》2022-2023學(xué)年第一學(xué)期期末試卷
- 西京學(xué)院《土木工程施工技術(shù)與組織》2022-2023學(xué)年第一學(xué)期期末試卷
- 西京學(xué)院《建筑工程計量與計價》2022-2023學(xué)年第一學(xué)期期末試卷
- 西京學(xué)院《非線性編輯》2022-2023學(xué)年第一學(xué)期期末試卷
- 西京學(xué)院《大數(shù)據(jù)存儲與管理技術(shù)》2023-2024學(xué)年期末試卷
- 西華師范大學(xué)《學(xué)科課程標(biāo)準(zhǔn)與教材研究》2021-2022學(xué)年第一學(xué)期期末試卷
- 西華師范大學(xué)《外國史學(xué)史》2022-2023學(xué)年第一學(xué)期期末試卷
- 《2021國標(biāo)暖通圖集資料》14K117-3 錐形風(fēng)帽
- 幕墻竣工驗收自評報告7頁
- 機動車維修企業(yè)安全生產(chǎn)標(biāo)準(zhǔn)化考評方法和考評實施細則(完整版)
- 外研版小學(xué)英語外研版(一起)五上Module 10《Unit 1 You should tidy your toys》ppt課件2
- 江西省職業(yè)培訓(xùn)補貼范圍及標(biāo)準(zhǔn)-江西省職業(yè)技能鑒定指導(dǎo)中心
- 七年級生物上冊(濟南版)知識點歸納
- 應(yīng)急聯(lián)防聯(lián)動協(xié)議
- 財務(wù)會計職業(yè)生涯人物訪談報告
- (完整版)電渣壓力焊施工施工工藝
- D600變頻器說明書
- 上海英皇明星城初步設(shè)計(圖文)
評論
0/150
提交評論