廣東省深圳實驗學(xué)校2023年數(shù)學(xué)高二上期末考試模擬試題含解析_第1頁
廣東省深圳實驗學(xué)校2023年數(shù)學(xué)高二上期末考試模擬試題含解析_第2頁
廣東省深圳實驗學(xué)校2023年數(shù)學(xué)高二上期末考試模擬試題含解析_第3頁
廣東省深圳實驗學(xué)校2023年數(shù)學(xué)高二上期末考試模擬試題含解析_第4頁
廣東省深圳實驗學(xué)校2023年數(shù)學(xué)高二上期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

廣東省深圳實驗學(xué)校2023年數(shù)學(xué)高二上期末考試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線關(guān)于直線對稱的直線方程為()A. B.C. D.2.已知數(shù)列滿足,且,,則()A. B.C. D.3.如圖,在三棱柱中,平面,,,分別是,中點,在線段上,則與平面的位置關(guān)系是()A.垂直 B.平行C.相交但不垂直 D.要依點的位置而定4.已知點是雙曲線的左焦點,是雙曲線右支上一動點,過點作軸垂線并延長交雙曲線左支于點,當(dāng)點向上移動時,的值()A.增大 B.減小C.不變 D.無法確定5.《鏡花緣》是清代文人李汝珍創(chuàng)作的長篇小說,書中有這樣一個情節(jié):一座樓閣到處掛滿了五彩繽紛的大小燈球,燈球有兩種,一種是大燈下綴2個小燈,另一種是大燈下綴4個小燈,大燈共360個,小燈共1200個.若在這座樓閣的燈球中,隨機選取一個燈球,則這個燈球是大燈下綴4個小燈的概率為A. B.C. D.6.已知是橢圓與雙曲線的公共焦點,P是它們的一個公共點,且,線段的垂直平分線過,若橢圓的離心率為,雙曲線的離心率為,則的最小值為()A. B.3C.6 D.7.如果橢圓上一點到焦點的距離等于6,則線段的中點到坐標(biāo)原點的距離等于()A.7 B.10C.12 D.148.若函數(shù),則()A. B.C.0 D.19.已知為等腰直角三角形的直角頂點,以為旋轉(zhuǎn)軸旋轉(zhuǎn)一周得到幾何體,是底面圓上的弦,為等邊三角形,則異面直線與所成角的余弦值為()A. B.C. D.10.口袋中裝有大小形狀相同的紅球3個,白球3個,小明從中不放回的逐一取球,已知在第一次取得紅球的條件下,第二次取得白球的概率為()A.0.4 B.0.5C.0.6 D.0.7511.若橢圓上一點到C的兩個焦點的距離之和為,則()A.1 B.3C.6 D.1或312.設(shè)等差數(shù)列,前n項和分別是,若,則()A.1 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線與直線垂直,則__________14.已知拋物線C:的焦點為F,準(zhǔn)線為l,過點F斜率為的直線與拋物線C交于點M(M在x軸的上方),過M作于點N,連接NF交拋物線C于點Q,則__________15.經(jīng)過兩直線l1:x-2y+4=0和l2:x+y-2=0的交點P,且與直線l3:3x-4y+5=0垂直的直線l的方程為________16.古希臘數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn):平面內(nèi)到兩個定點,的距離之比為定值的點的軌跡是圓.人們將這個圓稱為阿波羅尼斯圓,簡稱阿氏圓.已知點,,動點滿足,記動點的軌跡為曲線,給出下列四個結(jié)論:①曲線方程為;②曲線上存在點,使得到點的距離為;③曲線上存在點,使得到點的距離大于到直線的距離;④曲線上存在點,使得到點與點的距離之和為.其中所有正確結(jié)論的序號是___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C:,斜率為的直線l與橢圓C交于A、B兩點且(1)求橢圓C的離心率;(2)求直線l的方程18.(12分)已知橢圓的焦距為,離心率為.(1)求橢圓的方程;(2)若斜率為1的直線與橢圓交于不同的兩點,,求的最大值.19.(12分)在△ABC中,(1)求B的大?。?2)求cosA+cosC的最大值20.(12分)在①(b-c)cosA=acosC,②sin(B+C)=-1+2sin2,③acosC=b-c,這三個條件中任選一個作為已知條件,然后解答問題在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知______________(1)求角A的大?。唬?)若a=2,且△ABC的面積為2,求b+c21.(12分)求適合條件的橢圓的標(biāo)準(zhǔn)方程.(1)長軸長是短軸長的2倍,且過點;(2)在x軸上的一個焦點與短軸兩端點的連線互相垂直,且焦距為6.22.(10分)若等比數(shù)列的各項為正,前項和為,且,.(1)求數(shù)列的通項公式;(2)若是以1為首項,1為公差的等差數(shù)列,求數(shù)列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先聯(lián)立方程得,再求得直線的點關(guān)于直線對稱點的坐標(biāo)為,進而根據(jù)題意得所求直線過點,,進而得直線方程.【詳解】解:聯(lián)立方程得,即直線與直線的交點為設(shè)直線的點關(guān)于直線對稱點的坐標(biāo)為,所以,解得所以直線關(guān)于直線對稱的直線過點,所以所求直線方程的斜率為,所以所求直線的方程為,即故選:C2、A【解析】由已知兩個不等式,利用“兩邊夾”思想求得,然后利用累加法可求得【詳解】∵,∴,∴,又,∴,即,∴故選:A【點睛】本題考查數(shù)列的遞推式,由遞推式的特征,采用累加法求得數(shù)列的項.解題關(guān)鍵是利用“兩邊夾”思想求解3、B【解析】構(gòu)造三角形,先證∥平面,同理得∥平面,再證平面∥平面即可.【詳解】連接,,.因為在直三棱柱中,M,N分別是,AB的中點,所以∥.因為平面內(nèi),平面,所以∥平面.同理可得AM∥平面.又因為,平面,平面,所以平面∥平面.又因為P點在線段上,所以∥平面.故選:B.4、C【解析】令雙曲線右焦點為,由對稱性可知,,結(jié)合雙曲線的定義即可得出結(jié)果.【詳解】令雙曲線右焦點為,由對稱性可知,,則,為常數(shù),故選:C.5、B【解析】設(shè)大燈下綴2個小燈為個,大燈下綴4個小燈有個,根據(jù)題意求得,再由古典概型及其概率的公式,即可求解【詳解】設(shè)大燈下綴2個小燈為個,大燈下綴4個小燈有個,根據(jù)題意可得,解得,則燈球的總數(shù)為個,故這個燈球是大燈下綴4個小燈的概率為,故選B【點睛】本題主要考查了古典概型及其概率的計算,其中解答中根據(jù)題意列出方程組,求得兩種燈球的數(shù)量是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題6、C【解析】利用橢圓和雙曲線的性質(zhì),用橢圓雙曲線的焦距長軸長表示,再利用均值不等式得到答案【詳解】設(shè)橢圓長軸,雙曲線實軸,由題意可知:,又,,兩式相減,可得:,,.,,當(dāng)且僅當(dāng)時取等號,的最小值為6,故選:C【點睛】本題考查了橢圓雙曲線的性質(zhì),用橢圓雙曲線的焦距長軸長表示是解題的關(guān)鍵,意在考查學(xué)生的計算能力7、A【解析】可由橢圓方程先求出,在利用橢圓的定義求出,利用已知求解出,再取的中點,連接,利用中位線,即可求解出線段的中點到坐標(biāo)原點的距離.【詳解】因為橢圓,,所以,結(jié)合得,,取的中點,連接,所以為的中位線,所以.故選:A.8、A【解析】構(gòu)造函數(shù),再用積的求導(dǎo)法則求導(dǎo)計算得解.【詳解】令,則,求導(dǎo)得:,所以.故選:A9、B【解析】設(shè),過點作的平行線,與平行的半徑交于點,找出異面直線與所成角,然后通過解三角形可得出所求角的余弦值.【詳解】設(shè),過點作的平行線,與平行的半徑交于點,則,,所以為異面直線與所成的角,在三角形中,,,所以.故選:B.【點睛】本題考查異面直線所成角余弦值的計算,一般通過平移直線的方法找到異面直線所成的角,考查計算能力,屬于中等題.10、C【解析】求出第一次取得紅球的事件、第一次取紅球第二次取白球的事件概率,再利用條件概率公式計算作答.【詳解】記“第一次取得紅球”為事件A,“第二次取得白球”為事件B,則,,于是得,所以在第一次取得紅球的條件下,第二次取得白球的概率為0.6.故選:C11、B【解析】討論焦點的位置利用橢圓定義可得答案.【詳解】若,則由得(舍去);若,則由得故選:B.12、B【解析】根據(jù)等差數(shù)列的性質(zhì)和求和公式變形求解即可【詳解】因為等差數(shù)列,的前n項和分別是,所以,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、-3【解析】因為直線與直線垂直,所以考點:本題考查兩直線垂直的充要條件點評:若兩直線方程分別為,則他們垂直的充要條件是14、【解析】由題意畫出圖形,寫出直線的方程,與拋物線方程聯(lián)立求出的坐標(biāo),進一步求出的坐標(biāo),求得即可求解【詳解】解:如圖,由拋物線,得,,則,與拋物線聯(lián)立得,解得、,,,,,為等邊三角形,,過作軸的垂線交軸于,設(shè),,,,,在拋物線上,,解得,,,,則,故答案為:15、4x+3y-6=0【解析】直接求出兩直線l1:x﹣2y+4=0和l2:x+y﹣2=0的交點P的坐標(biāo),求出直線的斜率,然后求出所求直線方程【詳解】由方程組可得P(0,2)∵l⊥l3,∴kl=﹣,∴直線l的方程為y﹣2=﹣x,即4x+3y-6=0故答案為:4x+3y-6=016、①④【解析】設(shè),根據(jù)滿足,利用兩點間距離公式化簡整理,即可判斷①是否正確;由①可知,圓上的點到的距離的范圍為,進而可判斷②是否正確;設(shè),根據(jù)題意可知,再根據(jù)在曲線上,可得,由此即可判斷③是否正確;由橢圓的的定義,可知在橢圓上,再根據(jù)橢圓與曲線的位置關(guān)系,即可判斷④是否正確.【詳解】設(shè),因為滿足,所以,整理可得:,即,所以①正確;對于②中,由①可知,點在圓的外部,因為到圓心的距離,半徑為,所以圓上的點到的距離的范圍為,而,所以②不正確;對于③中,假設(shè)存在,使得到點的距離大于到直線的距離,又,到直線的距離,所以,化簡可得,又,所以,即,故假設(shè)不成立,故③不正確;對于④中,假設(shè)存在這樣的點,使得到點與點的距離之和為,則在以點與點為焦點,實軸長為的橢圓上,即在橢圓上,易知橢圓與曲線有交點,故曲線上存在點,使得到點與點的距離之和為;所以④正確.故答案為:①④.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)將橢圓化為標(biāo)準(zhǔn)方程,求得,進而求得離心率;(2)設(shè)直線,,,與橢圓聯(lián)立,借助韋達定理及弦長公式求得,從而求得直線方程.【小問1詳解】由題知,橢圓C:,則,離心率【小問2詳解】設(shè)直線,,聯(lián)立,化簡得,則,解得,,由弦長公式知,,解得,故直線或18、(1);(2).【解析】(1)由題設(shè)可得且,結(jié)合橢圓參數(shù)關(guān)系求,即可得橢圓的方程;(2)設(shè)直線為,聯(lián)立拋物線整理成一元二次方程的形式,由求m的范圍,再應(yīng)用韋達定理及弦長公式求關(guān)于m的表達式,根據(jù)二次函數(shù)性質(zhì)求最值即可.小問1詳解】由題設(shè),且,故,,則,所以橢圓的方程為.【小問2詳解】設(shè)直線為,聯(lián)立橢圓并整理得:,所以,可得,且,,所以且,故當(dāng)時,.19、(1)(2)1【解析】(1)由余弦定理及題設(shè)得;(2)由(1)知當(dāng)時,取得最大值試題解析:(1)由余弦定理及題設(shè)得,又∵,∴;(2)由(1)知,,因為,所以當(dāng)時,取得最大值考點:1、解三角形;2、函數(shù)的最值.20、(1)(2)【解析】(1)選①:化邊為角化簡求出cos;選②:利用倍角公式將sin()=?1+2sin2化簡為sin=?cos,再利用輔助角公式求解即可;選③:化邊為角化簡運算求解(2)利用面積公式求得,再利用余弦定理可得,計算即可.【小問1詳解】選①∵∴sincos=sinCcos+sincosC=sin(+C)=sin∴cos∵∈,∴=選②∵sin()=?1+2sin2,∴sin=?cos∴sin(+A)=1∵A∈∴A=選③∵∴∴∵A∈,∴A=【小問2詳解】∵,∴又∵∴即21、(1)或(2)【解析】(1)待定系數(shù)法去求橢圓的標(biāo)準(zhǔn)方程即可;(2)待定系數(shù)法去求橢圓的標(biāo)準(zhǔn)方程即可.【小問1詳解】當(dāng)橢圓焦點在x軸上時,方程可設(shè)為,將點代入得,解之得,則所求橢圓方程為當(dāng)橢圓焦點在y軸上時,方程可設(shè)為,將

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論