河北省魏縣第五中學2023年高二數(shù)學第一學期期末檢測模擬試題含解析_第1頁
河北省魏縣第五中學2023年高二數(shù)學第一學期期末檢測模擬試題含解析_第2頁
河北省魏縣第五中學2023年高二數(shù)學第一學期期末檢測模擬試題含解析_第3頁
河北省魏縣第五中學2023年高二數(shù)學第一學期期末檢測模擬試題含解析_第4頁
河北省魏縣第五中學2023年高二數(shù)學第一學期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河北省魏縣第五中學2023年高二數(shù)學第一學期期末檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若的解集是,則等于()A.-14 B.-6C.6 D.142.給出下列結論:①如果數(shù)據的平均數(shù)為3,方差為0.2,則的平均數(shù)和方差分別為14和1.8;②若兩個變量的線性相關性越強,則相關系數(shù)r的值越接近于1.③對A、B、C三種個體按3:1:2的比例進行分層抽樣調查,若抽取的A種個體有15個,則樣本容量為30.則正確的個數(shù)是().A.3 B.2C.1 D.03.已知等差數(shù)列滿足,則其前10項之和為()A.140 B.280C.68 D.564.如圖,是邊長為4的等邊三角形的中位線,將沿折起,使得點A與P重合,平面平面,則四棱錐外接球的表面積是()A. B.C. D.5.已知圓M的圓心在直線上,且點,在M上,則M的方程為()A. B.C. D.6.如圖,平行六面體中,與的交點為,設,則選項中與向量相等的是()A. B.C. D.7.等差數(shù)列中,,,則()A.1 B.2C.3 D.48.已知直線與橢圓:()相交于,兩點,且線段的中點在直線:上,則橢圓的離心率為()A. B.C. D.9.在等比數(shù)列中,,,則等于()A.90 B.30C.70 D.4010.將一張坐標紙折疊一次,使點與重合,求折痕所在直線是()A. B.C. D.11.已知直線l的方向向量,平面α的一個法向量為,則直線l與平面α的位置關系是()A.平行 B.垂直C.在平面內 D.平行或在平面內12.已知,滿足,則的最小值為()A.5 B.-3C.-5 D.-9二、填空題:本題共4小題,每小題5分,共20分。13.已知是雙曲線的左、右焦點,若為雙曲線上一點,且,則__________.14.已知數(shù)列中,,,則_______.15.某學校為了獲得該校全體高中學生的體有鍛煉情況,按照男、女生的比例分別抽樣調查了55名男生和45名女生的每周鍛煉時間,通過計算得到男生每周鍛煉時間的平均數(shù)為8小時,方差為6;女生每周鍛煉時間的平均數(shù)為6小時,方差為8.根據所有樣本的方差來估計該校學生每周鍛煉時間的方差為________16.若直線與直線平行,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓的圓心在直線上,與軸正半軸相切,且被直線:截得的弦長為.(1)求圓的方程;(2)設點在圓上運動,點,且點滿足,記點的軌跡為.①求的方程,并說明是什么圖形;②試探究:在直線上是否存在定點(異于原點),使得對于上任意一點,都有為一常數(shù),若存在,求出所有滿足條件的點的坐標,若不存在,說明理由.18.(12分)如圖,底面是矩形的直棱柱中,;(1)求證:平面;(2)求直線與平面所成角的大小;19.(12分)已知函數(shù),其中(1)當時,求函數(shù)的單調區(qū)間;(2)①若恒成立,求的最小值;②證明:,其中.20.(12分)如圖,在長方體中,底面是邊長為1的正方形,側棱長為2,且動點P在線段AC上運動(1)若Q為的中點,求點Q到平面的距離;(2)設直線與平面所成角為,求的取值范圍21.(12分)已知橢圓的左、右焦點分別為,,且橢圓過點,離心率,為坐標原點,過且不平行于坐標軸的動直線與有兩個交點,,線段的中點為.(1)求的標準方程;(2)記直線斜率為,直線的斜率為,證明:為定值;(3)軸上是否存在點,使得為等邊三角形?若存在,求出點的坐標;若不存在,請說明理由.22.(10分)已知拋物線C:的焦點為F,為拋物線C上一點,且(1)求拋物線C的方程:(2)若以點為圓心,為半徑圓與C的準線交于A,B兩點,過A,B分別作準線的垂線交拋物線C于D,E兩點,若,證明直線DE過定點

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由一元二次不等式的解集,結合根與系數(shù)關系求參數(shù)a、b,即可得.【詳解】∵的解集為,∴-5和2為方程的兩根,∴有,解得,∴.故選:A.2、B【解析】對結論逐一判斷【詳解】對于①,則的平均數(shù)為,方差為,故①正確對于②,若兩個變量的線性相關性越強,則相關系數(shù)r的絕對值越接近于1,故②錯誤對于③,對A、B、C三種個體按3:1:2的比例進行分層抽樣調查,若抽取的A種個體有15個,則樣本容量為,故③正確故正確結論為2個故選:B3、A【解析】根據等差數(shù)列的性質,可得,結合等差數(shù)列的求和公式,即可求解.【詳解】由題意,等差數(shù)列滿足,根據等差數(shù)列的性質,可得,所以數(shù)列的前10項和為.故選:A.4、A【解析】分別取的中點,易得,則點為四邊形的外接圓的圓心,則四棱錐外接球的球心在過點且垂直平面的直線上,設球心為,設外接球的半徑為,,利用勾股定理求得半徑,從而可得出答案.【詳解】解:分別取的中點,在等邊三角形中,,是中位線,則都是等邊三角形,所以,所以點為四邊形的外接圓的圓心,則四棱錐外接球的球心在過點且垂直平面的直線上,設球心為,由為的中點,所以,因為平面平面,且平面平面,平面,所以平面,則,設外接球半徑為,,,則,,所以,解得,所以,所以四棱錐外接球的表面積是.故選:A.第II卷5、C【解析】由題設寫出的中垂線,求其與的交點即得圓心坐標,再應用兩點距離公式求半徑,即可得圓的方程.【詳解】因為點,在M上,所以圓心在的中垂線上由,解得,即圓心為,則半徑,所以M的方程為故選:C6、B【解析】利用空間向量加減法、數(shù)乘的幾何意義,結合幾何體有,進而可知與向量相等的表達式.【詳解】連接,如下圖示:,.故選:B7、B【解析】根據給定條件利用等差數(shù)列性質直接計算作答.【詳解】在等差數(shù)列中,因,,而,于是得,解得,所以.故選:B8、A【解析】將直線代入橢圓方程整理得關于的方程,運用韋達定理,求出中點坐標,再由條件得到,再由,,的關系和離心率公式,即可求出離心率.【詳解】解:將直線代入橢圓方程得,,即,設,,,,則,即中點的橫坐標是,縱坐標是,由于線段的中點在直線上,則,又,則,,即橢圓的離心率為.故選:A9、D【解析】根據等比數(shù)列的通項公式即可求出答案.【詳解】設該等比數(shù)列的公比為q,則,則.故選:D10、D【解析】設,,則折痕所在直線是線段AB的垂直平分線,故求出AB中點坐標,折痕與直線AB垂直,進而求出斜率,用點斜式求出折痕所在直線方程.【詳解】,,所以與的中點坐標為,又,所以折痕所在直線的斜率為1,故折痕所在直線是,即.故選:D11、D【解析】根據題意,結合線面位置關系的向量判斷方法,即可求解.【詳解】根據題意,因為,所以,所以直線l與平面α的位置關系是平行或在平面內故選:D12、D【解析】作出可行域,作出目標函數(shù)對應的直線,平移該直線可得最優(yōu)解【詳解】解:作出可行域,如圖內部(含邊界),作直線,在中,,當直線向下平移時,增大,因此把直線向上平移,當直線過點時,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、17【解析】根據雙曲線的定義求解【詳解】由雙曲線方程知,,,又.,所以(1舍去)故答案為:1714、【解析】根據遞推公式一一計算即可;【詳解】解:因為,所以,,,故答案為:15、【解析】先求出100名學生每周鍛煉的平均時間,然后再求這100名學生每周鍛煉時間的方差,從而可估計該校學生每周鍛煉時間的方差【詳解】由題意可得55名男生和45名女生的每周鍛煉時間的平均數(shù)為小時,因為55名男生每周鍛煉時間的方差為6;45名女生每周鍛煉時間的方差為8,所以這100名學生每周鍛煉時間的方差為,所以該校學生每周鍛煉時間的方差約為,故答案為:16、【解析】根據直線平行的充要條件即可求出【詳解】當時,顯然兩直線不平行,所以依題有,解得故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)①,圓;②存在,.【解析】(1)設圓心,根據題意,得到半徑,根據弦長的幾何表示,由題中條件,列出方程求解,得出,從而可得圓心和半徑,進而可得出結果;(2)①設,根據向量的坐標表示,由題中條件,得到,代入圓的方程,即可得出結果;②假設存在一點滿足(其中為常數(shù)),設,根據題意,得到,再由①,得到,兩式聯(lián)立化簡整理,得到,推出,求解得出,即可得出結果.【詳解】(1)設圓心,則由圓與軸正半軸相切,可得半徑.∵圓心到直線的距離,由,解得.故圓心為或,半徑等于.∵圓與軸正半軸相切圓心只能為故圓的方程為;(2)①設,則:,,∵點A在圓上運動即:所以點的軌跡方程為,它是一個以為圓心,以為半徑的圓;②假設存在一點滿足(其中為常數(shù))設,則:整理化簡得:,∵在軌跡上,化簡得:,所以整理得,解得:;存在滿足題目條件.【點睛】本題主要考查求圓的方程,考查圓中的定點問題,涉及圓的弦長公式等,屬于??碱}型.18、(1)證明見解析(2)【解析】(1)通過證明和可得答案;(2)連接,則為直線與平面所成角的平面角,在直角三角形中計算即可.【小問1詳解】棱柱為直棱柱,面,又面,又直棱柱的底面是矩形,,又,平面,平面,平面;【小問2詳解】連接,面,則為直線與平面所成角的平面角在直角三角形中,則,,所以直線與平面所成角的大小為.19、(1)單調遞增區(qū)間為,單調遞減區(qū)間為(2)①1;②證明見解析【解析】(1)求出函數(shù)的導數(shù),在定義域內,解關于導函數(shù)的不等式,求出函數(shù)的單調區(qū)間即可;(2)①分離參數(shù)得,令,利用函數(shù)的單調性求出的最大值即可;②由①知:,時取“=”,令,即,最后累加即可.【小問1詳解】由已知條件得,其中的定義域為,則,當時,,當時,,綜上所述可知:的單調遞增區(qū)間為,單調遞減區(qū)間為;【小問2詳解】①由恒成立,即恒成立,令,則,當時,,當時,,∴在上單調遞增,上單調遞減,∴,∴的最小值為1.②由①知:,時取“=”,令,得,∴,當時,.20、(1)1(2)【解析】(1)以AB,AD,為x,y,z軸正向建立直角坐標系,利用空間向量法求出平面的法向量,結合點到平面的距離的向量求法計算即可;(2)設點,,進而得出的坐標,利用向量的數(shù)量積即可列出線面角正弦值的表達式,結合二次函數(shù)的性質即可得出結果.【小問1詳解】由題意,分別以AB,AD,為x,y,z軸正向建立直角坐標系,于是,,,,,設平面法向量所以,解得,,令得,,設點Q到平面的距離為d,【小問2詳解】由(1)可知,平面的法向量,由P點在線段AC上運動可設點,于是,,所以,的取值范圍是21、(1);(2)證明見解析;(3)不存在,理由見解析.【解析】(1)由橢圓所過點及離心率,列方程組,再求解即得;(2)設出點A,B坐標并列出它們滿足的關系,利用點差法即可作答;(3)設直線的方程,聯(lián)立直線與橢圓的方程,借助韋達定理求得,,再結合為等邊三角形的條件即可作答.【詳解】(1)顯然,半焦距c有,即,則,所以橢圓的標準方程為;(2)設,,,,由(1)知,,兩式相減得,即,而弦的中點,則有,所以;(3)假定存在符合要求的點P,由(1)知,設直線的方程為,由得:,則,,于是得,從而得點,,因為等邊三角形,即有,,因此,,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論