




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣西桂林陽朔中學2024屆數學高二上期末經典試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.的三個內角A,B,C所對的邊分別為a,b,c,若,則()A. B.C. D.2.已知點在拋物線:上,點為拋物線的焦點,,點P到y(tǒng)軸的距離為4,則拋物線C的方程為()A. B.C. D.3.設,則“”是“直線與直線”平行的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.即不充分也不必要條件4.如圖所示,某空間幾何體的三視圖是3個全等的等腰直角三角形,且直角邊長為2,則該空間幾何體的體積為()A. B.C. D.5.變量與的數據如表所示,其中缺少了一個數值,已知關于的線性回歸方程為,則缺少的數值為()22232425262324▲2628A.24 B.25C.25.5 D.266.已知實數滿足,則的取值范圍()A.-1m B.-1m<0或0<mC.m或m-1 D.m1或m-17.下列三個命題:①“若,則a,b全為0”的逆否命題是“若a,b全不為0,則”;②若事件A與事件B互斥,則;③設命題p:若m是質數,則m一定是奇數,那么是真命題;其中真命題的個數為()A.3 B.2C.1 D.08.若數列1,a,b,c,9是等比數列,則實數b的值為()A.5 B.C.3 D.3或9.已知橢圓與雙曲線有共同的焦點,則()A.14 B.9C.4 D.210.已知為原點,點,以為直徑的圓的方程為()A. B.C. D.11.若不等式組表示的區(qū)域為,不等式表示的區(qū)域為,向區(qū)域均勻隨機撒顆芝麻,則落在區(qū)域中的芝麻數約為()A. B.C. D.12.已知空間向量,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若橢圓的焦點在軸上,且長軸長是短軸長的2倍,則______.14.已知橢圓和雙曲線有相同的焦點和,設橢圓和雙曲線的離心率分別為,,P為兩曲線的一個公共點,且(O為坐標原點).若,則的取值范圍是______15.若方程表示的曲線是雙曲線,則實數m的取值范圍是___;該雙曲線的焦距是___16.在平行六面體中,點P是AC與BD的交點,若,且,則___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知動圓過定點,且與直線相切.(1)求動圓圓心的軌跡的方程;(2)直線過點與曲線相交于兩點,問:在軸上是否存在定點,使?若存在,求點坐標,若不存在,請說明理由.18.(12分)已知拋物線C的方程是.(1)求C的焦點坐標和準線方程;(2)直線l過拋物線C的焦點且傾斜角為,與拋物線C的交點為A,B,求的長度.19.(12分)如圖,在正方體中,E為的中點(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值20.(12分)設點P是曲線上的任意一點,k是該曲線在點P處的切線的斜率(1)求k的取值范圍;(2)求當k取最大值時,該曲線在點P處的切線方程21.(12分)某省電視臺為了解該省衛(wèi)視一檔成語類節(jié)目的收視情況,抽查東西兩部各5個城市,得到觀看該節(jié)目的人數(單位:千人)如下莖葉圖所示:其中一個數字被污損.(1)求東部各城市觀看該節(jié)目觀眾平均人數超過西部各城市觀看該節(jié)目觀眾平均人數的概率.(2)隨著節(jié)目的播出,極大激發(fā)了觀眾對成語知識的學習積累的熱情,從中獲益匪淺.現從觀看該節(jié)目的觀眾中隨機統(tǒng)計了4位觀眾的周均學習成語知識的時間(單位:小時)與年齡(單位:歲),并制作了對照表(如下表所示)年齡(歲)20304050周均學習成語知識時間(小時)2.5344.5由表中數據,試求線性回歸方程,并預測年齡為55歲觀眾周均學習成語知識時間.參考公式:,.22.(10分)已知是拋物線的焦點,點在拋物線上,且.(1)求的方程;(2)過上一動點作的切線交軸于點.判斷線段的中垂線是否過定點?若過定點,求出定點坐標;若不過定點,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】利用正弦定理邊化角,角化邊計算即可.【詳解】由正弦定理邊化角得,,再由正弦定理角化邊得,即故選:D.2、D【解析】由拋物線定義可得,注意開口方向.詳解】設∵點P到y(tǒng)軸的距離是4∴∵,∴.得:.故選:D.3、D【解析】由兩直線平行確定參數值,根據充分必要條件的定義判斷【詳解】時,兩直線方程分別為,,它們重合,不平行,因此不是充分條件;反之,兩直線平行時,,解得或,由上知時,兩直線不平行,時,兩直線方程分別為,,平行,因此,本題中也不是必要條件故選:D4、A【解析】在該空間幾何體的直觀圖中去求其體積即可.【詳解】依托棱長為2的正方體得到該空間幾何體的直觀圖為三棱錐則故選:A5、A【解析】可設出缺少的數值,利用表中的數據,分別表示出、,將樣本中心點帶入回歸方程,即可求得參數.【詳解】設缺少的數值為,則,,因為回歸直線方程經過樣本點的中心,所以,解得.故選:A6、C【解析】把看成動點與所確定的直線的斜率,動點在所給曲線上.【詳解】就是點,所確定的直線的斜率,而在上,因為,.故選:C7、B【解析】寫出逆否命題可判斷①;根據互斥事件的概率定義可判斷②;根據寫出再判斷真假可判斷③.【詳解】對于①,“,則a,b全為0”的逆否命題是“若a,b不全為0,則”,故①錯誤;對于②,滿足互斥事件的概率求和的方法,所以②為真命題;③命題p:若m是質數,則m一定是奇數.2是質數,但2是偶數,命題p是假命題,那么真命題故選:B.8、C【解析】根據等比數列的定義,利用等比數列的通項公式求解【詳解】解:設該等比數列公比為q,∵數列1,a,b,c,9是等比數列,∴,,∴,故,解得,∴故選:C9、C【解析】根據給定條件結合橢圓、雙曲線方程的特點直接列式計算作答.【詳解】設橢圓半焦距為c,則,而橢圓與雙曲線有共同的焦點,則在雙曲線中,,即有,解得,所以.故選:C10、A【解析】求圓的圓心和半徑,根據圓的標準方程即可求解﹒【詳解】由題知圓心為,半徑,∴圓方程為﹒故選:A﹒11、A【解析】作出兩平面區(qū)域,計算兩區(qū)域的公共面積,利用幾何概型得出芝麻落在區(qū)域Γ內的概率,進而可得答案.【詳解】作出不等式組所表示的平面區(qū)域如下圖中三角形ABC及其內部,不等式表示的區(qū)域如下圖中的圓及其內部:由圖可得,A點坐標為點坐標為坐標為點坐標為.區(qū)域即的面積為,區(qū)域的面積為圓的面積,即,其中區(qū)域和區(qū)域不相交的部分面積即空白面積,所以區(qū)域和區(qū)域相交的部分面積,所以落入區(qū)域的概率為.所以均勻隨機撒顆芝麻,則落在區(qū)域中芝麻數約為.故選:A.12、A【解析】求得,即可得出.【詳解】,,,.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】根據橢圓焦點在軸上方程的特征進行求解即可.【詳解】因為橢圓的焦點在軸上,所以有,因為長軸長是短軸長的2倍,所以有,故答案為:414、【解析】設出半焦距c,用表示出橢圓的長半軸長、雙曲線的實半軸長,由可得為直角三角形,由此建立關系即可計算作答.【詳解】設橢圓的長半軸長為,雙曲線的實半軸長為,它們的半焦距為c,于是得,,由橢圓及雙曲線的對稱性知,不妨令焦點和在x軸上,點P在y軸右側,由橢圓及雙曲線定義得:,解得,,因,即,而O是線段的中點,因此有,則有,即,整理得:,從而有,即有,又,則有,即,解得,所以的取值范圍是.故答案:15、①.②.2【解析】由題意可得,由此可解得m的范圍,進一步將方程化為標準方程即可求得焦距【詳解】由所表示的曲線是雙曲線,可知,解得,當時,方程可變?yōu)椋海藭r雙曲線焦距為,當時,m不存在,不合題意;故雙曲線的焦距:故答案為:;16、【解析】由向量的運算法則,求得,根據,結合向量的數量積的運算,即可求解.【詳解】由題意可得,,則,故.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,.【解析】(1)利用兩點間的距離公式和直線與圓相切的性質即可得出;(2)假設存在點,滿足題設條件,設直線的方程,根據韋達定理即可求出點的坐標【小問1詳解】設動圓的圓心,依題意:化簡得:,即為動圓的圓心的軌跡的方程【小問2詳解】假設存在點,滿足條件,使①,顯然直線斜率不為0,所以由直線過點,可設,由得設,,,,則,由①式得,,即消去,,得,即,,,存在點使得18、(1)焦點為,準線方程:(2)【解析】(1)拋物線的標準方程為,焦點在軸上,開口向右,,即可求出拋物線的焦點坐標和準線方程;(2)現根據題意給出直線的方程,代入拋物線,求出兩交點的橫坐標的和,然后利用焦半徑公式求解即可【小問1詳解】(1)拋物線的標準方程是,焦點在軸上,開口向右,,∴,∴焦點為,準線方程:.【小問2詳解】∵直線l過拋物線C的焦點且傾斜角為,,∴直線L的方程為,代入拋物線化簡得,設,則,所以故所求的弦長為1219、(Ⅰ)證明見解析;(Ⅱ).【解析】(Ⅰ)證明出四邊形為平行四邊形,可得出,然后利用線面平行的判定定理可證得結論;也可利用空間向量計算證明;(Ⅱ)可以將平面擴展,將線面角轉化,利用幾何方法作出線面角,然后計算;也可以建立空間直角坐標系,利用空間向量計算求解.【詳解】(Ⅰ)[方法一]:幾何法如下圖所示:在正方體中,且,且,且,所以,四邊形為平行四邊形,則,平面,平面,平面;[方法二]:空間向量坐標法以點為坐標原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標系,設正方體的棱長為,則、、、,,,設平面的法向量為,由,得,令,則,,則.又∵向量,,又平面,平面;(Ⅱ)[方法一]:幾何法延長到,使得,連接,交于,又∵,∴四邊形為平行四邊形,∴,又∵,∴,所以平面即平面,連接,作,垂足為,連接,∵平面,平面,∴,又∵,∴直線平面,又∵直線平面,∴平面平面,∴在平面中的射影在直線上,∴直線為直線在平面中的射影,∠為直線與平面所成的角,根據直線直線,可知∠為直線與平面所成的角.設正方體的棱長為2,則,,∴,∴,∴,即直線與平面所成角的正弦值為.[方法二]:向量法接續(xù)(I)的向量方法,求得平面平面的法向量,又∵,∴,∴直線與平面所成角的正弦值為.[方法三]:幾何法+體積法如圖,設的中點為F,延長,易證三線交于一點P因為,所以直線與平面所成的角,即直線與平面所成的角設正方體的棱長為2,在中,易得,可得由,得,整理得所以所以直線與平面所成角的正弦值為[方法四]:純體積法設正方體的棱長為2,點到平面的距離為h,在中,,,所以,易得由,得,解得,設直線與平面所成的角為,所以【整體點評】(Ⅰ)的方法一使用線面平行的判定定理證明,方法二使用空間向量坐標運算進行證明;(II)第一種方法中使用純幾何方法,適合于沒有學習空間向量之前的方法,有利用培養(yǎng)學生的集合論證和空間想象能力,第二種方法使用空間向量方法,兩小題前后連貫,利用計算論證和求解,定為最優(yōu)解法;方法三在幾何法的基礎上綜合使用體積方法,計算較為簡潔;方法四不作任何輔助線,僅利用正余弦定理和體積公式進行計算,省卻了輔助線和幾何的論證,不失為一種優(yōu)美的方法.20、(1)(2)【解析】(1)先求導數再求最值即可求解答案;(2)由(1)確定切點,從而也確定的斜率就可以求切線.【小問1詳解】設,因為,所以,所以k的取值范圍為【小問2詳解】由(1)知,此時,即,所以此時曲線在點P處的切線方程為21、(1);(2)詳見解析.【解析】(1)先根據兩個平均值的大小得到的取值范圍,再利用古典概型的概率公式進行求解;(2)先利用最小二乘法求出線性回歸方程,再利用方程進行預測.試題解析:(1)設被污損的數字為,則的所有可能取值為:0,1,2,3,4,5,6,7,8,9共10種等可能結果,令,解得,則滿足“東部各城市觀看該節(jié)目觀眾平均人數超過西部各城市觀看該節(jié)目觀眾平均人數的”的取值有0,1,2,3,4,5,6,7共8個,所以其概率為.(2)由表中數據得,,∴,線性回歸方程.可預測年齡為55觀眾周均學習成語知識時間
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025南京房地產中介服務合同
- 2025年小賣部租賃合同
- 一年級成長綜述
- 2025全天候出租車承包合同模板
- 音樂教學的創(chuàng)新之路
- 2025四川省婚禮慶典服務合同示范文本
- 2025品牌服裝特許經營合同書
- 《建筑設計課件集》
- 2025年浙江寧波市軌道永盈供應鏈有限公司招聘筆試參考題庫附帶答案詳解
- 2025年安徽蕪湖市新蕪產業(yè)投資基金有限公司招聘筆試參考題庫含答案解析
- JJF(陜) 053-2021 浮游菌采樣器校準規(guī)范
- 統(tǒng)編版語文四年級上冊期末復習- 一字多義專項選擇題(含答案)
- 高二 花城版 歌唱 第三單元第三節(jié)《潤腔與韻味》課件
- 學校墻面彩繪施工合同
- 醫(yī)院住院綜合樓施工組織設計方案
- 合作聯(lián)展合同模板
- LNG冷能利用介紹
- 三年級語文下冊 第19課《剃頭大師》同步訓練題(含答案)(部編版)
- 安全生產特種設備日管控、周排查月調度工作制度
- 臨時用電施工組織設計-完整
- 2023年高考遼寧卷化學真題(解析版)
評論
0/150
提交評論