河北衡水2024屆高二上數(shù)學(xué)期末綜合測試試題含解析_第1頁
河北衡水2024屆高二上數(shù)學(xué)期末綜合測試試題含解析_第2頁
河北衡水2024屆高二上數(shù)學(xué)期末綜合測試試題含解析_第3頁
河北衡水2024屆高二上數(shù)學(xué)期末綜合測試試題含解析_第4頁
河北衡水2024屆高二上數(shù)學(xué)期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

河北衡水2024屆高二上數(shù)學(xué)期末綜合測試試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)等差數(shù)列的公差為d,且,則()A.12 B.4C.6 D.82.命題P:ax2+2x﹣1=0有實(shí)數(shù)根,若¬p是假命題,則實(shí)數(shù)a的取值范圍是()A.{a|a<1} B.{a|a≤﹣1}C.{a|a≥﹣1} D.{a|a>﹣1}3.若,則下列結(jié)論不正確的是()A. B.C. D.4.直線的傾斜角為()A B.C. D.5.已知x,y是實(shí)數(shù),且,則的最大值是()A. B.C. D.6.直三棱柱ABC-A1B1C1中,△ABC為等邊三角形,AA1=AB,M是A1C1的中點(diǎn),則AM與平面所成角的正弦值為()A. B.C. D.7.方程所表示的曲線為()A.射線 B.直線C.射線或直線 D.無法確定8.直線經(jīng)過兩個(gè)定點(diǎn),,則直線傾斜角大小是()A. B.C. D.9.已知直線與拋物線C:相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),,的斜率分別為,,則()A. B.C. D.10.設(shè),若,則()A. B.C. D.11.已知不等式只有一個(gè)整數(shù)解,則m的取值范圍是()A. B.C. D.12.已知動點(diǎn)的坐標(biāo)滿足方程,則的軌跡方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓M過,,且圓心M在直線上.(1)求圓M的標(biāo)準(zhǔn)方程;(2)過點(diǎn)的直線m截圓M所得弦長為,求直線m的方程;14.已知數(shù)列的各項(xiàng)均為正數(shù),記為的前n項(xiàng)和,從下面①②③中選取兩個(gè)作為條件,證明另外一個(gè)成立①數(shù)列是等差數(shù)列:②數(shù)列是等差數(shù)列;③注:若選擇不同的組合分別解答,則按第一個(gè)解答計(jì)分15.設(shè)雙曲線C:(a>0,b>0)的一條漸近線為y=x,則C的離心率為_________16.與圓外切于原點(diǎn),且被y軸截得的弦長為8的圓的標(biāo)準(zhǔn)方程為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點(diǎn)為F,點(diǎn)在C上(1)求p的值及F的坐標(biāo);(2)過F且斜率為的直線l與C交于A,B兩點(diǎn)(A在第一象限),求18.(12分)在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為,(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;(2)已知,曲線與曲線相交于A,B兩點(diǎn),求.19.(12分)記數(shù)列的前n項(xiàng)和為,已知點(diǎn)在函數(shù)的圖像上(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前9項(xiàng)和20.(12分)如圖,四棱錐中,底面是邊長為2的正方形,,,且,為的中點(diǎn)(1)求平面與平面夾角的余弦值;(2)在線段上是否存在點(diǎn),使得點(diǎn)到平面的距離為?若存在,確定點(diǎn)的位置;若不存在,請說明理由21.(12分)在中,角的對邊分別為,且.(1)求;(2)若,的面積為,求.22.(10分)已知數(shù)列的前項(xiàng)和為,并且滿足(1)求數(shù)列的通項(xiàng)公式;(2)若,數(shù)列的前項(xiàng)和為,求證:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】利用等差數(shù)列的通項(xiàng)公式的基本量計(jì)算求出公差.【詳解】,所以.故選:B2、C【解析】根據(jù)是假命題,判斷出是真命題.對分成,和兩種情況,結(jié)合方程有實(shí)數(shù)根,求得的取值范圍.詳解】┐p是假命題,則p是真命題,∴ax2+2x﹣1=0有實(shí)數(shù)根,當(dāng)a=0時(shí),方程為2x﹣1=0,解得x=0.5,有根,符合題意;當(dāng)a≠0時(shí),方程有根,等價(jià)于△=4+4a≥0,∴a≥﹣1且,綜上所述,a的可能取值為a≥﹣1故選:C【點(diǎn)睛】本小題主要考查根據(jù)命題否定的真假性求參數(shù),屬于基礎(chǔ)題.3、B【解析】由得出,再利用不等式的基本性質(zhì)和基本不等式來判斷各選項(xiàng)中不等式的正誤.【詳解】,,,,A選項(xiàng)正確;,B選項(xiàng)錯誤;由基本不等式可得,當(dāng)且僅當(dāng)時(shí)等號成立,,則等號不成立,所以,C選項(xiàng)正確;,,D選項(xiàng)正確.故選:B.【點(diǎn)睛】本題考查不等式正誤的判斷,涉及不等式的基本性質(zhì)和基本不等式,考查推理能力,屬于基礎(chǔ)題.4、C【解析】設(shè)直線傾斜角為,則,再結(jié)合直線的斜率與傾斜角的關(guān)系求解即可.【詳解】設(shè)直線的傾斜角為,則,∵,所以.故選:C5、D【解析】將方程化為圓的標(biāo)準(zhǔn)方程,則的幾何意義是圓上一點(diǎn)與點(diǎn)連線的斜率,進(jìn)而根據(jù)直線與圓相切求得答案.【詳解】方程可化為,表示以為圓心,為半徑的圓,的幾何意義是圓上一點(diǎn)與點(diǎn)A連線的斜率,設(shè),即,當(dāng)此直線與圓相切時(shí),斜率最大或最小,當(dāng)切線位于切線AB時(shí)斜率最大.此時(shí),,,所以的最大值為.故選:D6、B【解析】取的中點(diǎn),以為原點(diǎn),所在直線分別為x軸、y軸、z軸,建立空間直角坐標(biāo)系,即可根據(jù)線面角的向量公式求出【詳解】如圖所示,取的中點(diǎn),以為原點(diǎn),所在直線分別為x軸、y軸、z軸,建立空間直角坐標(biāo)系,不妨設(shè),則,所以,平面的一個(gè)法向量為設(shè)AM與平面所成角為,向量與所成的角為,所以,即AM與平面所成角的正弦值為故選:B7、C【解析】將方程化為或,由此可得所求曲線.【詳解】由得:或,即或,方程所表示的曲線為射線或直線.故選:C.8、A【解析】由兩點(diǎn)坐標(biāo)求出斜率,再得傾斜角【詳解】由已知直線的斜率為,所以傾斜角為故選:A9、C【解析】設(shè),,由消得:,又,由韋達(dá)定理代入計(jì)算即可得答案.【詳解】設(shè),,由消得:,所以,故.故選:C【點(diǎn)睛】本題主要考查了直線與拋物線的位置關(guān)系,直線的斜率公式,考查了轉(zhuǎn)化與化歸的思想,考查了學(xué)生的運(yùn)算求解能力.10、B【解析】先求出,再利用二倍角公式、和差角公式即可求解.【詳解】因?yàn)?,且,所?所以,,所以.故選:B11、B【解析】依據(jù)導(dǎo)函數(shù)得到函數(shù)的單調(diào)性,數(shù)形結(jié)合去求解即可解決.【詳解】不等式只有一個(gè)整數(shù)解,可化為只有一個(gè)整數(shù)解令,則當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減,則當(dāng)時(shí),取最大值,當(dāng)時(shí),恒成立,的草圖如下:,,則若只有一個(gè)整數(shù)解,則,即故不等式只有一個(gè)整數(shù)解,則m的取值范圍是故選:B12、C【解析】此方程表示點(diǎn)到點(diǎn)的距離與到點(diǎn)的距離之差為8,而這正好符合雙曲線的定義,點(diǎn)的軌跡是雙曲線的右支,,的軌跡方程是,故選C.二、填空題:本題共4小題,每小題5分,共20分。13、(1)(2)或【解析】(1)首先由條件設(shè)圓的標(biāo)準(zhǔn)方程,再將圓上兩點(diǎn)代入,即可求得圓的標(biāo)準(zhǔn)方程;(2)分斜率不存在和存在兩種情況,分別根據(jù)弦長公式,求得直線方程.【小問1詳解】圓心在直線上,設(shè)圓的標(biāo)準(zhǔn)方程為:,圓過點(diǎn),,,解得圓的標(biāo)準(zhǔn)方程為【小問2詳解】①當(dāng)斜率不存在時(shí),直線m的方程為:,直線m截圓M所得弦長為,符合題意②當(dāng)斜率存在時(shí),設(shè)直線m:,圓心M到直線m的距離為根據(jù)垂徑定理可得,,,解得直線m方程為或.14、證明過程見解析【解析】選①②作條件證明③時(shí),可設(shè)出,結(jié)合的關(guān)系求出,利用是等差數(shù)列可證;也可分別設(shè)出公差,寫出各自的通項(xiàng)公式后利用兩者的關(guān)系,對照系數(shù),得到等量關(guān)系,進(jìn)行證明.選①③作條件證明②時(shí),根據(jù)等差數(shù)列的求和公式表示出,結(jié)合等差數(shù)列定義可證;選②③作條件證明①時(shí),設(shè)出,結(jié)合的關(guān)系求出,根據(jù)可求,然后可證是等差數(shù)列;也可利用前兩項(xiàng)的差求出公差,然后求出通項(xiàng)公式,進(jìn)而證明出結(jié)論.【詳解】選①②作條件證明③:[方法一]:設(shè),則,當(dāng)時(shí),;當(dāng)時(shí),;因?yàn)橐彩堑炔顢?shù)列,所以,解得;所以,,故.[方法二]:設(shè)等差數(shù)列的公差為d,等差數(shù)列的公差為,則,將代入,化簡得對于恒成立則有,解得.所以選①③作條件證明②:因?yàn)椋堑炔顢?shù)列,所以公差,所以,即,因?yàn)?,所以是等差?shù)列.選②③作條件證明①:[方法一]:設(shè),則,當(dāng)時(shí),;當(dāng)時(shí),;因?yàn)?,所以,解得或;?dāng)時(shí),,當(dāng)時(shí),滿足等差數(shù)列的定義,此時(shí)為等差數(shù)列;當(dāng)時(shí),,不合題意,舍去.綜上可知為等差數(shù)列.[方法二]【最優(yōu)解】:因?yàn)?,所以,,因?yàn)橐矠榈炔顢?shù)列,所以公差,所以,故,當(dāng)時(shí),,當(dāng)時(shí),滿足上式,故的通項(xiàng)公式為,所以,,符合題意.【整體點(diǎn)評】這類題型在解答題后可證是等差數(shù)列;法二:利用是等差數(shù)列即前兩項(xiàng)的差求出公差,然后求出的通項(xiàng)公式,利用,求出的通項(xiàng)公式,進(jìn)而證明出結(jié)論.15、【解析】根據(jù)已知可得,結(jié)合雙曲線中的關(guān)系,即可求解.【詳解】由雙曲線方程可得其焦點(diǎn)在軸上,因?yàn)槠湟粭l漸近線為,所以,.故答案為:【點(diǎn)睛】本題考查的是有關(guān)雙曲線性質(zhì),利用漸近線方程與離心率關(guān)系是解題的關(guān)鍵,要注意判斷焦點(diǎn)所在位置,屬于基礎(chǔ)題.16、;【解析】設(shè)所求圓的圓心為,根據(jù)兩圓外切于原點(diǎn)可知兩圓心與原點(diǎn)共線,再根據(jù)弦長列出方程組求出即可.【詳解】設(shè)所求圓的圓心為,因?yàn)閳A的圓心為,與原點(diǎn)連線的斜率為,又所求圓與已知圓外切于原點(diǎn),,①所以所求圓的半徑滿足,又被y軸截得的弦長為8,②由①②解得,所以圓的方程為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)4【解析】(1)將M坐標(biāo)代入方程即可;(2)聯(lián)立直線l與拋物線方程得到A、B的橫坐標(biāo),再利用焦半徑公式求出即可.【小問1詳解】將代入,得,解得,所以【小問2詳解】由(1)得拋物線方程為,直線l的方程為,聯(lián)立消y得,解得或,因?yàn)锳在第一象限,所以,所以,,所以18、(1),(2)2【解析】(1)消參數(shù)即可得曲線的普通方程,利用極坐標(biāo)方程與直角坐標(biāo)方程之間的轉(zhuǎn)化關(guān)系式,從而曲線的直角坐標(biāo)方程;(2)將的參數(shù)方程代入的直角坐標(biāo)方程,得關(guān)于的一元二次方程,由韋達(dá)定理得,即可得的值.【小問1詳解】由,消去參數(shù),得,即,所以曲線的普通方程為.由,得,即,所以曲線的直角坐標(biāo)方程為【小問2詳解】將代入,整理得,則,令方程的兩個(gè)根為由韋達(dá)定理得,所以.19、(1)(2)【解析】(1)利用的關(guān)系可求.(2)利用裂項(xiàng)相消法可求數(shù)列的前9項(xiàng)和【小問1詳解】由題意知當(dāng)時(shí),;當(dāng)時(shí),,適合上式所以【小問2詳解】則20、(1)(2)存在,點(diǎn)為線段的靠近點(diǎn)的三等分點(diǎn)【解析】(1)根據(jù)題意證得平面,進(jìn)而證得平面,得到平面,以點(diǎn)為坐標(biāo)原點(diǎn),,,所在直線分別為軸、軸和軸建立空間直角坐標(biāo)系,求得平面和平面的法向量,結(jié)合向量的夾角公式,即可求解;(2)設(shè)點(diǎn),求得平面的法向量為,結(jié)合向量的距離公式列出方程,求得的值,即可得到答案.【小問1詳解】解:因?yàn)樗倪呅螢檎叫危瑒t,,由,,,所以平面,因?yàn)槠矫?,所以,又由,,,所以平面,又因?yàn)槠矫妫?,因?yàn)榍移矫妫云矫?,由平面,且,不妨以點(diǎn)為坐標(biāo)原點(diǎn),,,所在直線分別為軸、軸和軸建立空間直角坐標(biāo)系,如圖所示,則,,,,可得,,,設(shè)平面的法向量為,則,取,可得,所以,易得平面的法向量為,則,由平面與平面夾角為銳角,所以平面與平面夾角的余弦值【小問2詳解】解:設(shè)點(diǎn),可得,,設(shè)平面的法向量為,則,取,可得,所以,所以點(diǎn)到平面的距離為,解得,即或因?yàn)?,所以故?dāng)點(diǎn)為線段的靠近點(diǎn)的三等分點(diǎn)時(shí),點(diǎn)到平面的距離為.21、(1);(2).【解析】(1)由正弦定理得到,兩邊消去公因式得到,化一即可求得角A;(2)因?yàn)?,所以,再結(jié)合余弦定理得到結(jié)果.【詳解】(1)由,得,因?yàn)?,所以,整理得:,因,所?(2)因?yàn)?,所以,因?yàn)榧?,所以,?【點(diǎn)睛】本題主要考查正弦定理及余弦定理的應(yīng)用以及三角形面積公式,屬于難題.在解與三角形有關(guān)的問題時(shí),正弦定理、余弦定理是兩個(gè)主要依據(jù).解三角形時(shí),有時(shí)可用正弦定理,有時(shí)也可用余弦定理,應(yīng)注意用哪一個(gè)定理更方便、簡捷一般來說,當(dāng)條件中同時(shí)出現(xiàn)及、時(shí),往往用余弦

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論