




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
(3)13-14(3)1)yy0f'(x0)(xx0f'(x0yf
yy0f'(x1)(xx0其中斜率是在xx1處對原函數(shù)求導(dǎo)得到,此時,你可根據(jù)直線與函數(shù)同時經(jīng)過點函數(shù)復(fù)雜時,容易忽略f'(x0不應(yīng)包含x的問題。PAGEPAGE2(x0y0
yy0f'(x0)(xx0f'(x0yf
如果(x0y0(x1y1
yy0f'(x1)(xx0xx1處對原函數(shù)求導(dǎo)得到,此時,你可根據(jù)直線與函數(shù)同時經(jīng)過點(x1y1f'(x1,列出方程組并求解得到切線方程。多數(shù)情況下,經(jīng)過函數(shù)復(fù)雜時,容易忽略f'(x0x的問題。f(xx21aR當(dāng)a1yf(x在點(0,f(0f(xPAGEPAGE3f(x
x2
,aR當(dāng)a1yf(x在點(0,f(0))f(xf(x)eaxaa1),其中ax當(dāng)a1yf(x在點(1,f(1f(xPAGEPAGE4f(x)eaxaa1,其中ax當(dāng)a1yf(x在點(1,f(1f(x ax2(a1)x (ax1)(x f'(x)ax (a1)
(ax1x
x,原函數(shù)一般含有l(wèi)nx,需滿足x0,例如上式中 x觀察正項以外的表達(dá)式為類一次函數(shù)還是類二次函數(shù)。注意參數(shù)ax高次項上時,需先對a進(jìn)行討論。只要題目沒有說明a0,則當(dāng)a=0時,一個二次函數(shù)型的導(dǎo)函數(shù)當(dāng)a0時,對于二次函數(shù)型的導(dǎo)函數(shù),注意討論判別式,因為存在的前提a0,而0時,導(dǎo)函數(shù)的值恒正(或恒負(fù)(或恒減)00,會求得兩個根,這兩個根可能帶有參數(shù),需要討論x1x2x1x2兩種情況說明。a0a0a0→討論判別式→討論兩根大小→討論根與區(qū)PAGEPAGE5 ax2(a1)x (ax1)(x f'(x)ax (a1)
(ax1x
x,原函數(shù)一般含有l(wèi)nx,需滿足x0,例如上式中 x觀察正項以外的表達(dá)式為類一次函數(shù)還是類二次函數(shù)。注意參數(shù)ax高次項上時,需先對a進(jìn)行討論。只要題目沒有說明a0,則當(dāng)a=0時,一個二次函數(shù)型的導(dǎo)函數(shù)當(dāng)a0時,對于二次函數(shù)型的導(dǎo)函數(shù),注意討論判別式,因為存在的前提a0,而0時,導(dǎo)函數(shù)的值恒正(或恒負(fù)(或恒減)0時,令導(dǎo)函數(shù)等于0x1x2x1
a0a0a0→討論判別式→討論兩根大小→討論根與區(qū)f(xx22alnxf(x2 f(x)在[1,2]上是減函數(shù),求實數(shù)a的取值范圍xPAGEPAGE6f(xx22alnxf(xg(x)2f(x在[12上是減函數(shù),求實數(shù)axf(xxalnxf(xf'(x當(dāng)a=0f(xg(x)1x2ax-f'(x)(a1)g(x2PAGEPAGE7f(x)xalnxf(xf'(x當(dāng)a=0f(xg(x)1x2ax-f'(x)(a1g(x2;;a已知函數(shù)f(x)x (a1)lnx,aRx當(dāng)a1f(x的單調(diào)區(qū)間f(x在[1,e上的最小值為2,求a的值PAGEPAGE8;af(xx
(a1)lnx,aRx當(dāng)a1f(x的單調(diào)區(qū)間f(x在[1,e上的最小值為2,求a的值aR,函數(shù)f(x)ax33x2x2yf(xag(xexf(x[0,2aPAGEPAGE9aR,函數(shù)f(x)ax33x2x2y
f(xag(x)exf(x在[0,2af(x1x22xaex2若a1f(xx1f(xR上是增函數(shù),求實數(shù)aPAGEPAGE10f(x1x22xaex2若a1f(xx1f(xR上是增函數(shù),求實數(shù)a已知函數(shù)f(x)ax1lnxaf(x若函數(shù)f(xx1處取得極值,對x(0,),f(x)bx2恒成立,求實數(shù)PAGEPAGE11已知函數(shù)f(x)ax1lnxaf(xf(xx1處取得極值,對x(0),f(x)bx2恒成立,求實數(shù)πf(xxcosxsinxx[0,]2(Ⅰ)f(x)0(II)若asinxb(0,π上恒成立,求a的最大值與b PAGEPAGE12f(xxcosxsinxx(Ⅰ)f(x)0
[0,]2(0,若asinxb (0,
上恒成立,求a的最大值與b 已知函數(shù)f(xacosxxsinxx
π,2f(xAx|f(x0當(dāng)1a2f(x有多少個極值點?(只需寫出結(jié)論PAGEPAGE130f(xacosxxsinxx
π,2f(xAx|f(x
當(dāng)1a
f(x有多少個極值點?(只需寫出結(jié)論f(xaln(xa1x2x(a02f(x若1a2(ln21)f(xx0,且a1x0a2a4f(xxxx[0xxx1, 有f(x2f(x1)m成立,求實數(shù)m (本題可參考數(shù)據(jù):ln20.7, 0.8,
0.59PAGEPAGE14f(xaln(xa1x2x(a02f(x若1a2(ln21)f(xx0,且a1x0a2a4f(xxxx[0xxx1 f(x2f(x1)m成立,求實數(shù)m (ln20.7,
0.8,
0.59;eyx1xey
求證:0yx2轉(zhuǎn)化為證1eyex 已知函數(shù)f(x)(a )lnx x(a1 試討論f(x在區(qū)間(016a3,yf(xP(x1f(x1)),Q(x2,f(x2,使得曲線yf(xPQx1x25.6PAGEPAGE15;ey
x y1x y2
求證:0yx轉(zhuǎn)化為證1eyex f(xa
)lnx x(a1
f(x在區(qū)間(016a3yf(xP(x1,f(x1)),Q(x2,f(x2,使得曲線yf(xPQx1x25.6f(x)xlnxaxln(ax)(a0)當(dāng)a1f(x證明:對x1,x2∈R+xlnxxlnxxx)ln(xxln2
ln (i,nN*
PAGEPAGE16f(x)xlnxaxln(ax)(a0當(dāng)a1f(x證明:對x1,x2∈R+xlnxxlnxxx)ln(xxln2 2n2若
n21xiln2
ln
(i,nN*f(xxa)ex,其中eaRf(x當(dāng)a1g(xf(xax2的零點個數(shù),并說明理由PAGEPAGE17f(xxa)ex,其中eaRf(x當(dāng)a1g(xf(xax2的零點個數(shù),并說明理由0,因為形如ax1,x0,a0的表達(dá)式是不可能為正的,要2axa2fx
x2
,其中aR當(dāng)a1yf(xf(xf(x在[0,上存在最大值和最小值,求aPAGEPAGE180,因為形如ax1x0a0的表達(dá)式是不可能為正的,要2axa21已知函數(shù)f(x) x2
,其中aR當(dāng)a1yf(xf(xf(x在[0上存在最大值和最小值,求af(x)1x31x2 f(x在2,)上存在單調(diào)遞增區(qū)間,求a3當(dāng)0a2f(x在[1,4]上的最小值為16f(x3【【16】(20130PAGEPAGE19f(x)1x31x2 f(x在2,)上存在單調(diào)遞增區(qū)間,求a3當(dāng)0a2f(x在[1,4上的最小值為16f(x3f(x1ax2a1)xlnx2
g(x)x22bx78a0yf(x在點(1,f(1當(dāng)a1f(x1當(dāng)a 4g(xMbPAGEPAGE20【17(201318改f(x1ax2a1)xlnx2
g(x)x22bx78當(dāng)a0yf(x在點(1,f(1當(dāng)a1f(x當(dāng)a1f(x在(02Mx[1,24g(xMbg(x【【18(2014f(x在區(qū)間[2,1]P(1,t3yf(xtPAGEPAGE21f(x2x33xf(x在區(qū)間[2,1P(1,t3yf(xtxf(x)ax
(a當(dāng)a1f(xF(x)f(x1沒有零點,求實數(shù)a取值范圍PAGEPAGE22xf(x)ax
(a當(dāng)a1f(xF(x)f(x1沒有零點,求實數(shù)a取值范圍1已知aR,函數(shù)f(x)lnx axx當(dāng)a0f(xf(x在區(qū)間[2,)上是單調(diào)函數(shù),求a1PAGEPAGE23已知aR,函數(shù)f(x)lnx axx當(dāng)a0f(xf(x在區(qū)間[2)上是單調(diào)函數(shù),求af(x)axlnxg(xeax3x,其中aRf(xMf(xg(xM上具有相同的單調(diào)性,求aPAGEPAGE24f(x)axlnxg(xeax3x,其中aRf(xMf(xg(xM上具有相同的單調(diào)性,求af(xx2(a2)xalnx2a2,其中a2f(xf(x在0,2上有且只有一個零點,求實數(shù)a的取值范圍PAGEPAGE25f(xx2(a2)xalnx2a2,其中a2f(xf(x在02上有且只有一個零點,求實數(shù)a的取值范圍已知函數(shù)f f(xPAGEPAGE26 已知函數(shù)f f(x)f(x
x
,g(x)bx23x若曲線h(x)f(xg(x)在點(1,0)0,a,b當(dāng)a[3,,且ab=8(x)g(x)的單調(diào)區(qū)間,并求函數(shù)在區(qū)間[-fPAGEPAGE27f(x
x
,g(x)bx23x若曲線h(x)f(xg(x)在點(1,0)0,求a,b當(dāng)a[3,且ab=8時,求函數(shù)(x)g(x)的單調(diào)區(qū)間,并求函數(shù)在區(qū)間[-ffxax24lnx1aR當(dāng)a1fxPM傾斜角都是鈍角,求a
,PAGEPAGE28fxax24lnx1aR當(dāng)a1fxP11fxMmPM傾斜角都是鈍角,求a
fmm2
f(xe2x1ax1,aRyf(x)在點(0,f(0xey10垂直,求a設(shè)a2e3x[0,1]f(x)1成立,求實數(shù)aPAGEPAGE29f(xe2x1ax1aRyf(x)在點(0,f(0xey10垂直,求af(x設(shè)a2e3x[0,1f(x)1成立,求實數(shù)af(x
ax2x1,其中aR若a0f(x當(dāng)a1g(xf(x1PAGEPAGE30f(x
ax2x
,其中aR若a0f(x當(dāng)a1g(x)f(x1f(x)xlnxf(x當(dāng)k1f(xkx1PAGEPAGE31f(x)xlnxf(x當(dāng)k1f(x)kx1f(xxasinxcosxx0,π當(dāng)aπfx2當(dāng)aπfx2PAGEPAGE32f(xxasinxcosxx0π當(dāng)aπfx2當(dāng)aπfx2設(shè)lCy求l
0)0)PAGEPAGE33ln設(shè)l為曲線C: 10)x求l(10)f(x)exax2bx1,其中a,bR,e=2.71828…為自然對數(shù)的底數(shù)g(xf(xg(x在區(qū)間[0,1]f(1)0f(x在區(qū)間(0,1)內(nèi)有零點,求aPAGEPAGE34f(x)exax2bx1,其中a,bR,e=2.71828…為自然對數(shù)的底數(shù)g(x是函數(shù)f(xg(x)在區(qū)間[0,1f(10f(x在區(qū)間(0,1內(nèi)有零點,求af(xax21(a0g(xx3bx PAGEPAGE35f(xax21(a0g(xx3bxyf(xyg(x在它們的交點(1,ca,b當(dāng)a24bf(xg(x(1ee解:因為f(x) ,所以f(x)x2
eax(ax22x.(x2當(dāng)a1時
f(x)
x2
,f(x)
ex(x22x1)(x2 f(0)所以曲線yf(x)在點(0,f(0))處的切線方程為xy1 eax(ax22x (Ⅱ)因為f(x) (x2 (x2
(ax2xa (1)當(dāng)a0時,f(x0x0f(x0x0所以函數(shù)f(x)在區(qū)間(,0)單調(diào)遞增,在區(qū)間(0,)單調(diào)遞 (2)當(dāng)a0時,g(xax22xag(xax22xa0①當(dāng)0a1時,此時0由f(x)0得x ,或x
由f(x)0得 1
x 所以函數(shù)f(x)單調(diào)遞增區(qū)間是 )和 單調(diào)遞減區(qū)間 ②當(dāng)a1時,此時0.f(x0PAGEPAGE36ee解:因為f(x) ,所以x2
(x)
eax(ax22xa)(x2 (Ⅰ)當(dāng)a1時
ef(x) ,ex2f(0)
(x)
ex(x22x1)(x2 所以曲線yf(x)在點(0,f(0))處的切線方程為xy10 4 eax(ax22x
(x) (x2
(x2
2xa 5(1)當(dāng)a0時,f(x)0x0f(x0x0所以函數(shù)f(x)在區(qū)間(,0)單調(diào)遞增,在區(qū)間(0,)單調(diào)遞減 6(2)當(dāng)a0時,g(xax22xag(xax22xa0①當(dāng)0a1時,此時011111
7由f(x)0得x ,或x f(x0
1111111 1111所以函數(shù)f(x)單調(diào)遞增區(qū)間是1111 11111111 ②當(dāng)a1時,此時0.f(x0所以函數(shù)f(x)單調(diào)遞增區(qū)間是(,) 10③當(dāng)1a0時,此時0所以函數(shù)f(x)單調(diào)遞增區(qū)間是(, 10③當(dāng)1a0時,此時0PAGEPAGE371111由f(x)1111 11111由f(x)0得x ,或x 1111所以當(dāng)1a0時,函數(shù)f(x)單調(diào)遞減區(qū)間是1111 11111111 ④當(dāng)a1時,此時0f(x0f(x單調(diào)遞減區(qū)間是((Ⅰ)解:當(dāng)a1f(xex12f(xex12
1) x2
所以曲線yf(x)在點(1,f(1))處的切線方程是2exye0 分(Ⅱ)解:f(x)aeax(x1)[(a1)x1],x0 分①當(dāng)a1f(x0
x1f(x)的單調(diào)遞減區(qū)間為(,1);單調(diào)遞增區(qū)間為(1,0),(0,) 分a1f(x)0
x1x
1.a(chǎn)②當(dāng)1a0f(x的單調(diào)遞減區(qū)間為(11間為(1,0), ) 101a
a
③當(dāng)a0時,f(x)為常值函數(shù),不存在單調(diào)區(qū)間 11a0時,f(x)的單調(diào)遞減區(qū)間為(10)
1)1(1 ) 131a
a由f(x)0 x 由f(x)0得x ,或x 所以當(dāng)1a0時,函數(shù)f(x)單調(diào)遞減區(qū)間是 )和 單調(diào)遞增區(qū)間 ④當(dāng)a1時,此時0f(x0f(x單調(diào)遞減區(qū)間是((Ⅰ)解:當(dāng)a1f(xex12f(xex12
) x分f(13ef(1
所以曲線yf(x)在點(1,f(1))處的切線方程是2exye0 分(Ⅱ)解:f(x)aeax(x1)[(a1)x1],x0 分a1f(x0,解得x1f(x)的單調(diào)遞減區(qū)間為(,1);單調(diào)遞增區(qū)間為(1,0),(0,) 分a1f(x)0,解得x1x
1.a(chǎn)②當(dāng)1a0f(x的單調(diào)遞減區(qū)間為(1)
a
間為(1,0)
a
10③當(dāng)a0時,f(x)為常值函數(shù),不存在單調(diào)區(qū)間 11PAGEPAGE38 2x2解:(Ⅰ)f'(x)2x 1 由已知f'(2)1,解得a 3(II)f(x的定義域為(0(1)當(dāng)a0時,f'(x)0f(x的單調(diào)遞增區(qū)間為(0;……52(x a)(xa(2)當(dāng)a2(x a)(xaxx(0,a(a,x(0,a(a,f-0+ff(x的單調(diào)遞減區(qū)間是
a);單調(diào)遞增區(qū)間是
a) 8(II)g(x2x22alnxg'(x g(x為[12上的單調(diào)減函數(shù),g'(x0在[1 即 2x 0在[1,2]上恒成立
2x 9x 即a1x2在[1,2]上恒成立 11xh(x1x2,在[12上h'(x12x(
2x)0 7所以h(x在[12h(x)minh(227所以a 142))a0時,f(x)的單調(diào)遞減區(qū)間為(10)a
a
) 13PAGEPAGE394(201418)(Ⅰ)當(dāng)a=0時,f(x)xlnx,f'(x)lnx 1令f'(x)0得x 2xx e 1e f-0+f.f(xf(1)1.6分 ∵f'(x)lnx
g(x)1x2axlnxxa 7 g'(x)xa1a 8(xa)(1(x
1x2) (xa)(x 9(1)當(dāng)1a0時,在(0a(1g'(x0;在(a,1g'(x0 (2)當(dāng)a0時,在(0,1g'(x0;在1g'(x0 綜上所述,當(dāng)1a0gx單調(diào)遞增區(qū)間為0a,1,遞減區(qū)間為a,1;當(dāng)a0gx單調(diào)遞增區(qū)間為1,減區(qū)間為0,1. 2x2解:(Ⅰ)f'(x)2x 由已知f'(2)1,解得a (II)f(x的定義域為(0,(1)當(dāng)a0時,f'(x0f(x的單調(diào)遞增區(qū)間為(0,;……5(2)當(dāng)a0時f'(x) xxf'(x),f(xx(0,a(a,f-0+f由上表可知,函數(shù)f(x)的單調(diào)遞減區(qū)間是 a單調(diào)遞增區(qū)間是(a, (II)g(x2x22alnxg'(x g'(x0在[12
2x2a x即22x2a0在[1,2]即ax
x2在[1,2]上恒成立 h(x1x2,在[12上h'(x12x(12x0 7所以h(x在[1,2]為減函數(shù).h(x)minh(2)27PAGEPAGE40af(xx
(a1)lnx,aRx當(dāng)a1f(x的單調(diào)區(qū)間f(x在[1,e上的最小值為2,求a的值(Ⅰ)f f(x)1x2
a1x
x2a(a1)xx2
(x1)(xa)x2
af(x)0,即(x1)(xa)0,得x1或xax2f(x的增區(qū)間為(,1
4f(x0,即(x1)(xa)0,得1xax2f(x的減區(qū)間為(1
5(Ⅱ)①當(dāng)a1時,f(x)0在[1,ef(x在[1,e恒為增函數(shù).………6[f
f(11a2,得a3(舍去
7②當(dāng)1aef(x0xa或1.當(dāng)1xa時,f(x) f(x)在(1,a)上為減函數(shù)當(dāng)axe時,f(x) f(x)在(a,e)上為增函數(shù)[f
f(aa1a1ln(a2,得(舍)10③當(dāng)aef(x0在[1e]上恒成立,f(x在[1e]恒為減函數(shù).[f
f(e)e a12aea
a
a
13所以a 142PAGEPAGE41aR,函數(shù)f(x)ax33x2x2y
f(xag(x)exf(x在[0,2a
f(x)3ax26x3x(ax2)x2yf(xf(20,即6(2a20所以a1.經(jīng)檢驗,當(dāng)a1 6
a1時,x2是函數(shù)
yf(x)的極值點.由題設(shè),gx)ex(ax33x23ax26x),又ex0,所以,x(02]ax33x23ax26x03x2這等價于,不等式ax33x2
3xx2
x(02恒成立.令h(x)
3xx2(x(0,2] 3(x24x 3[(x2)2則h(x) 0 10(x2
(x26所以h(x)(02]上是減函數(shù),所以h(x)的最小值為h(2)
125a
6.即實數(shù)a的取值范圍為(,] 136 6f(x1x22xaex2若a1f(xx1f(xR上是增函數(shù),求實數(shù)a解(Ⅰ)由a1,f(x)1x22xex,f(1)3e 所以f(x)x2ex. ……3分又f(1)1e,4(2014年豐臺期末考試?yán)砜?8)當(dāng)a=0時,f(x)xlnx,f'(x)lnx 11令f'(x)0得x 2xx 1 1e f-0+f. f(xf()
.6∵f'(x)lnx
xxg(x)1x2axlnxxa 7 g'(x)xa1a 8 12(xa)(1 )2(x (xa)(x 9(1)當(dāng)1a0時,在(0,a(1,g'(x0;在(a,1g'(x0 (2)當(dāng)a0時,在(0,1)g'(x0;在1,g'(x0 綜上所述,當(dāng)1a0gx單調(diào)遞增區(qū)間為0,,遞減區(qū)間為a,1;當(dāng)a0gx單調(diào)遞增區(qū)間為,減區(qū)間為0,1y2
e)1e)(x1即2(1e)x2y10.5(Ⅱ)f(x)1x22xaexf(x)x2aex2f(x在Rf(x0整理得ax2g(x)x2,g(x)x3
x2aex0恒成 9 x,g(x),g(x)x3(3,0+由此得ag(3)=e3,即a的取值范圍是,e3 解:(Ⅰ)在區(qū)間0上
f(x)a1ax1 1 ①若a0,則f(x)0,f(x)是區(qū)間0,上的減函數(shù) 3②若a0,f(x0x1a1在區(qū)間(0,)上a
f(x)0,f(x是減函數(shù)1在區(qū)間(,上1a
f(x)0,f(x是增函數(shù)綜上所述,①當(dāng)a0時,f(x的遞減區(qū)間是0 ②當(dāng)a0時,f(x)的遞增區(qū)間是(,),遞減區(qū)間是(0,) 6 42a已知函數(shù)f(x)x (a1)lnx,aRx當(dāng)a1f(x的單調(diào)區(qū)間f(x在[1,e上的最小值為2,求a的值(Ⅰ)f f(x)1
a1x2a(a
(x1)(x
3af(x
(x1)(x得或, 得或(0,1, 4f(x
(x1)(x 得 , 得 ∴f(x)的減區(qū)間為(1, 5(Ⅱ)①當(dāng)a1時,f(x)0在[1,ef(x)在[1,e]恒為增函 6[f(x)]minf(1)1a2,得a3(舍去 7②當(dāng)1aef(x0xa或當(dāng)1xa時,f(x)0 f(x)在(1,a)上為減函數(shù);當(dāng)axe時,f(x)0 f(x)在(a,e)上為增函數(shù); 10③當(dāng)aef(x0在[1,e]上恒成立,此時f(x)在[1,e]恒為減函數(shù).[f
f(eeaa12e
a PAGEPAGE43(II)f(xx1f(1解得a1,經(jīng)檢驗滿足題意 7 ln由已知f(x)bx2,則f(x)bx
8g(x11lnxg(x
1lnxlnx-
易得g(x)在0,e2上遞減,在e2,上遞增
g(e2)1
,即b1
13【9(2014北京高考理18)解:(1)證明:f'xcosxxsinxcosxxsin∵x0,π 2f'x0,即fx0,π上單調(diào)遞減, 2∴fx0,π上的最大值為f00 2所以fx0(2)一方面令gxsinxx0,π 2 2g'xcosxxsinx,由(1)可知,g'x02x故gx在0,π上單調(diào)遞減,從而g(x)g (
2π,所以 22π hxsinxbxx0,π,則h'xcosxb 2 b1時,h'x0,故hxx0,π上單調(diào)遞減,從而hxh00 2 所以hxsinxbx0恒成立.綜上可知a 13PAGEPAGE44b1時,h'xcosxb00,π有唯一解xx0,x,h'x0 hx0,x0上單調(diào)遞增,從而hxh00sinxbx0sinxbxsinxbsinxb恒成立矛盾, 綜上,b1bmin(Ⅰ) 1對于x
,],則xπ2π
ππ 2,2,因為f(xacos(xxsin(xacosxxsinxf(x),所以f(x)是偶函數(shù) 4當(dāng)a0
f(xacosxxsinx0x ,π2π所以集合A{x|f(x)0}中元素的個數(shù)為 5a0f(xxsinx0x[ππ],得2
x0所以集合A{x|f(x)0}中元素的個數(shù)為 6a0時,因為f'(xasinxsinxxcosx1asinxxcosx0xπ
(0,)2所以函數(shù)f(x)是 ]上的增函數(shù) 82 因為f(0)a0,f() 0 π所以f(x在(0,上只有一個零點2由f(x)是偶函數(shù)可知,集合A{x|f(x)0}中元素的個數(shù)為 10綜上所述,當(dāng)a0時,集合A{x|f(x)0中元素的個數(shù)為0a0時,集合A{x|f(x0}中元素的個數(shù)為1;a0A{x|f(x0中元素個數(shù)為函數(shù)f(x)有3個極值點. 13分aR,函數(shù)f(x)ax33x2x2yf(xag(xexf(x[0,2a的取值范圍.x2yf(xf(20,即6(2a20所以a1a1 6
a1時,x2是函數(shù)yf(x)的極值點.即()g'(xex(ax33x23ax26x),又ex0,所以,x(0,2]ax33x23ax26x03x2這等價于,不等式ax33x2
3x x(0,2]恒成立.令 x2
3xx2(x(0,2] 3(x24x 3[(x2)2則h(x) 0, 10(x2 (x26所以h(x)在區(qū)間(0,2]上是減函數(shù),所以h(x)的最小值為h(2) 125所以a6.即實數(shù)a的取值范圍為(,6] 13 f(x1x22xaex2若a1f(xx1f(xR上是增函數(shù),求實數(shù)a解(Ⅰ)由a1,f(x)1x22xex,f(1)3e 1 所以f(x)x2ex 3PAGEPAGE45(Ⅰ)f(x的定義域為(af'(x) x1
x2(a
1x xf'(x0x0x當(dāng)1a0a+10f(xf'(xxx0af(x)00ff(x的單調(diào)遞增區(qū)間是(0
1(a0和
)
3當(dāng) 1時,f'(x) 0.所以,函數(shù)f(x)的單調(diào)遞減區(qū)間是( )x 4a1a+10f(xf'(xxxa0f(x)00ff(x的單調(diào)遞增區(qū)間是
10(a
和 ) 5(Ⅱ)證明:當(dāng)1a2(ln210時,由(Ⅰ)f(xf(0f(a1f(0aln(a0,f(a11(a1)2a11(1a20
f(x)在
所以f(x)至多有一個零點 7f(11e,PAGEPAGE46f(a2aln21a2a1a[a2(ln210 所以函數(shù)f(x)只有一個零點x0,且a1x0a 9解:因為142(ln215所以對任意x1,x2[0,x0]且x2x11,由(Ⅱ)可知:x1[0,a1),x2(a1,x0],且x21. 10分f(x在[0
上是增函數(shù),在
所以f(x1)f(0),f(x2)f(1) 11所以f
f(x2
f
當(dāng)a4f(0f(1aln(a14ln91 a1 所以f
f(x2
f
f 0 所以f(xf(x)f(0f(14ln91
f(xf(x)m恒成立的m4ln91 f(xa
)lnx x(a1
f(x在區(qū)間(016a3yf(xP(x1,f(x1)),Q(x2,f(x26yf(xPQx1x25(19(a x2(a1)x (xa)(x1(Ⅰ)解:由已知x0,f(x) a
1
a f(x0x1
a a1,所以011a1
3e1e)(x1即2(1e)x2y10.52(Ⅱ)f(x1x22xaexf(xx2aex2整理得ax2g(xx2,g(xx3 xg(xg(x)
x2aex0恒成 x(,3(3,0+由此得ag(3)=e3,即a的取值范圍是,e3 解:(Ⅰ)在區(qū)間0,上 f(x)a1ax ①若a0,則f(x)0,f(x)是區(qū)間0,上的減函數(shù) ②若a0,f(x0x1a1在區(qū)間(0,)上a
f(x)0,f(x是減函數(shù)在區(qū)間1,)上a
f(x)0,f(x是增函數(shù)PAGEPAGE47
(0
(,1
f(x)0f(x在
1f(x01a1上單調(diào)遞減,在1a,1aa1f(x01a1上單調(diào)遞減,在1a,1aa
x20x1x2a即 a
1
aa
1 x x 1所以a 11x1x2,a3, 1 x,x0x
xxx1x2)2
1 所 x
x)2x1x201 所以a1x1x2
xx
4 x
x
1 aa
aa
aa
在3,g(3656所以x1x25 136(Ⅰ)f(xlnxln(1x
1
f(x0x12當(dāng)0x1f(x0f(x在(01 1x1f(x0f(x在1,1 所以f(x)在x 時取得最小值,即f()
………4 (Ⅱ)因為f(xxlnxaxln(ax綜上所述,①當(dāng)a0時,f(x的遞減區(qū)間是0, ②當(dāng)a0時,f(x)的遞增區(qū)間是 ,),遞減區(qū)間是 6 PAGEPAGE48所以f(x)lnxln(ax) aa所以當(dāng)x 時,函數(shù)f(x)有最小值a2x1,x2∈R+xxa xlnxxlnxxlnx(ax)ln(ax)2x1x2ln(x1x2 x1x2ln(x1x2ln2 8(Ⅲ(ⅰ)當(dāng)n1時,由(Ⅱ)知命題成立.ⅱ)假設(shè)當(dāng)nkk∈N*)即若xx
1,則xlnxxlnx xln
ln2k nk1
x2k11x2k11.設(shè)F(x)x1lnx1x2lnx2 x2k11lnx2k11x2k1lnx2k1,F(xiàn)(x)(x1x2)ln[(x1x2)ln2] = (x2k11x2k1)ln(x2k11x2k1)(x1x2...x2k1)ln
F(xln2kln2ln2k1
nk12n2所以若
1
n2xiln2
ln
.……13(證法二)若x1x2 x2n x2nln (x2n1x2n)ln[(x2n1x2n)ln (x2n1x2n)ln(x2n1x2n)(x1x2...x2n)ln (x2n1x2n)ln(x2n1x2n)lnf(xx1f(1)解得a1,經(jīng)檢驗滿足題 ln由已知f(x)bx2,則f(x)bx b
令g(x)11lnx,則g(x)11lnxlnx- 易得g(x)在0,e2上遞減,在e2,上遞增 12
g(e2)1
,即b 11【9(2014北京高考理解:(1)f'xcosxxsinxcosxxsin∵x0,π f'x0,即fx0,π上單調(diào)遞減, fx0,π上的最大值為f00 所以fx0(2)gxsinxx0,πx g'xcosxxsinx,由(1)g'x0x2x故gx在0,π上單調(diào)遞減,從而g(x)g () a ,所以 2a hxsinxbxx0,πh'xcosxb b1時,h'x0,故hxx0,π上單調(diào)遞減,從而hxh00 PAGEPAGE49(x1x2x3x4)ln(x1x2x3x4)
(x xn)ln(x xn)2ln2 2 (xx...x)ln[(2 2
)ln2](n1)ln2ln2n 解f(xxa)exxR所以f(x)(xa1)ex 2令f(x)0,得xa 3xf(xf(xx(,aa(a1,f0f↘↗f(x的單調(diào)減區(qū)間為(,a1;單調(diào)增區(qū)間為(a1,.……6解:結(jié)論:函數(shù)g(x)有且僅有一個零點 7g(xf(xax20,xexax2,x0為此方程的一個實數(shù)解.所以x0是函數(shù)g(x)的一個零點 9x0時,方程可化簡為exaxF(xexaxF(xexa1,F(xiàn)(x)0xa.xF(xF(xxa(a,0F↘↗F(x的單調(diào)增區(qū)間為(a,;單調(diào)減區(qū)間為(,a)hxsinxbx0恒成立.PAGEPAGE50所以F(x)的最小值F(x)minF(a)1a 11因為a1,F(xiàn)(x)minF(a)1a0xRF(x)0,因此方程exax無實數(shù)解.x0g(x不存在零點綜上,函數(shù)g(x)有且僅有一個零點 13(Ⅰ)解:當(dāng)a1fx)
x2
f(x2(x1)(x1) 2(x2由f(0)2,得曲線yf(x)在原點處的切線方程是2xy0 3(Ⅱ)解:f(x)2(xa)(ax1) x2分①當(dāng)a0f(x
.x2所以f(x)在(0,)單調(diào)遞增,在(,0)單調(diào)遞減 5(xa)(x1當(dāng)a0,f(x)2a ax2②當(dāng)a0f(x)0
a,
1f(xf(xax(,(x1,x2(x2,f00f↘f(x1↗f(x2↘ 故f(x的單調(diào)減區(qū)間是(a(,;單調(diào)增區(qū)間是(a,).……… 分③當(dāng)a0f(xf(xb1時,h'xcosxb00,π有唯一解xx0,x,h'x0 2 hx0,x0上單調(diào)遞增,從而hxh00sinxbx0sinxbxsinxbsinxb恒成立矛盾, b1bmin1. 1對于x
π,π],則x[π 2,2 2,因為f(xacos(xxsin(xacosxxsinxf所以f(x)是偶函數(shù) 4當(dāng)a0時,因為f(x)acosxxsinx0x
2所以集合A{x|f(x)0}中元素的個數(shù)為 5
π,
]
x02所以集合A{x|f(x)0}中元素的個數(shù)為 6a0時,因為f'(xasinxsinxxcosx1asinxxcosx0xπ所以函數(shù)f(x)是 ]上的增函 82 因為f(0)a0,f() 0
π(0,)2π所以f(x在(0,上只有一個零點2由f(x)是偶函數(shù)可知,集合A{x|f(x)0}中元素的個數(shù)為 10綜上所述,當(dāng)a0時,集合A{x|f(x)0}中元素的個數(shù)為0a0A{x|f(x0}1a0A{x|f(x0PAGEPAGE51x(,x2(x2,x1(x1,f00f↗f(x2↘f(x1↗所以f
(,,
(a
,a)(a 9
a0時不合題意 10 當(dāng)a0時,由(Ⅱ)f(x在(0,單調(diào)遞增,在(,f 1在(0f()a
0 設(shè)x0為f(x)的零點,易知x0 x1xxf(x0x
f(x0 f(x在[0f(00,解得1aa0時,若f(x)在[0)上存在最大值和最小值,a的取值范圍是 12當(dāng)a0(Ⅱ)得,f(x在(0a(af在(0f(a)1f(x在[0f(00,解得a1,或a1所以a0f(x在[0上存在最大值和最小值,a的取值范圍是(1綜上,a的取值范圍是(, (0,1] 14【16(20130解答(1)fx)x2x2a(x1)21
2 f(x)在2,)3 13PAGEPAGE52存在2,)的子區(qū)間(mn)x(mnfx)3f
(x)在3
,f'
03
'(2)3
22a9
a9當(dāng)a1時,f(x)在(2,)上存在單調(diào)遞增區(qū) 6 (2)令f'(x) 0a
1
12
;
1
12f(x在(x1),(x2,)上單調(diào)遞減,在(x1x20a
x11x2f(x)在(1,x2)上單調(diào)遞增,在(x2,4)上單調(diào)遞 8f(x)f(x2f(4)f(1)276a0,f(4)8a40
10 解得a1,x f(x)的最大值為f(x)f(2)
…………13 當(dāng)a0f(xxln
f(1)
ln
1f'
x
2所以曲線yf(x)在點(1,f(1))處的切線方程y 3 ax2(a1)x (ax1)(xf'(x)ax(a1)
(x0………4a0(I)f(x的定義域為(af'(x x1x2a f'(x0x0x當(dāng)1a0a+10f(xf'(xxx0af00f )
1時,f'(x)
0.所以,函數(shù)f(x)的單調(diào)遞減區(qū)間是( ) a1a+10f(xf'(xxxa0f00f 1)和 ) f(0aln(a0,f(a11(a1)2(a11(1a20
fPAGEPAGE53f'(xx10x1f'(xx10x f(x的遞增區(qū)間為(0,1,遞減區(qū)間為在11
5②a0f'(x0x1xai)當(dāng)0a11af(x的遞增區(qū)間為
…………6x1a1a(1,ax1a1a(1,a+-+增減增, ii)a01a在0,1f'(x0,在(1f'(x
8函數(shù)f(x)的遞增區(qū)間為0,1,遞減區(qū)間為(1, 91(Ⅲ)由(Ⅱ)知,當(dāng)a 時,f(x)在(0,1)上是增函數(shù),在(1,2)上是減函數(shù)49所以Mf(1) 11989x[12]g(x)98x[12]x22bx79 g(x在[1,2]上的最大值大于等于8g(1)所以有 9g(2) 即 即
解得:b 13244b x22bx7 在 所以f(x)至多有一個零 7PAGEPAGE54x整理得b xx
[2,2
從而有bx1 x 3所以b的取值范圍是(,] 132解:(I)f
3得f'(x6x22令f'(x)0,得x 或x 22 f(210,f(22,f(2
2,f(1) f(x在區(qū)間2,1f
2)222(II)設(shè)過點P1,t的直線與曲線yf(x相切于點x0y0y2x33x,且切線斜率為k6x23 所以切線方程為yy6x23xx ty6x231 整理得4x36x2t3 g(x4x36x2t則“P1,t的直線與曲線yf(x相切”等價于“g(x3個不同零點g'(x)12x212x12xx
g'(x的情況如下:x0100tt所以,g0tg(x的極大值,g(1)tg(x的極小值,f(a2)aln21a2a1a[a2(ln210 所以函數(shù)f(x)只有一個零點x0,且a1x0a 94解:因為1 2(ln21)5且x21 10分因為函數(shù)f(x)在[0, 1)上是增函數(shù),在 所以f(x1)f(0),f(x2)f 11所以f f 當(dāng)a4f(0f(1)aln(a14ln91 a 所以f f(x2 f f 所以f(xf(x)f(0f(14ln91 f(xf(x)m恒成立的m4ln91 已知函數(shù)f(x)(a )lnx x(a1 試討論f(x在區(qū)間(016a3,yf(xP(x1f(x1)),Q(x2,f(x2,yf(xPQx1x25.6(19(a x2(a1)x (xa)(x1 ax0
(x) 1 . PAGEPAGE55g(0t30t3時,此時g(x在區(qū)間11上分別至多1個零點,所以g(x)至多有2個零點.g(1t10t1g(x在區(qū)間,0和0上分別至多1個零點,所以g(x至多有2個零點.g(0t30g(1t10時,即3t1時,因為g(1)tg(2)t110
7g(x分別在區(qū)間10,0,112上恰有一個零點,由于g(x在區(qū)間,01上單調(diào),所以g(x,01上恰有一個零點綜上可知,當(dāng)過點P1,t3條直線與曲線yf(x相切時,t的取值范圍是21A123條直線與曲線yf(x相切;B2,10存在2條直線與曲線yf(x)相切;過點C021條直線與曲線yf(x相切.由f(x)0,得x1,x 4 a1,所以011a1 PAGEPAGE56aex(x a(x(Ⅰ) ,xR 2(ex 當(dāng)a1f(x,f'(xx(,2(2,f0f(↘↗所以,當(dāng)a1時,函數(shù)f(x)的極小值為e2 6a(x(Ⅱ)F'(x)
f'(x) ①當(dāng)a0F(xF'(x)x(,2(2,f0f(↘↗ 8F(xF(2)
a10,解得ae2 9所以此時e2a0 10②當(dāng)a0F(xF'(x)x(,2(2,f0f(↗↘
ea e因為F(2)F(1)0,且F )a
a
a
0 12 所以此時函數(shù)F(x)總存在零點 13綜上所述,所求實數(shù)a的取值范圍是e2a0 (,1)上,f(x)01f(x0;在區(qū)間 f(x在
上單調(diào)遞減,在(1,1)上單調(diào)遞增 a a11
aa11 x x 所以a111x1x2,a3, x,x0xxxxx1x2)2
1 所以x
(xx)2x1x201 所以a1x1x2 ,整理得xx x x 1 aa令g(a) aag(a)4在3,g(3)6a a6所以x1x2 136則f(x)lnxln(1x) 1
f(x0x12PAGEPAGE571解(Ⅰ)當(dāng)a0時,f(x)lnx (x0x xf'(x) 所以,當(dāng)0x1f'(x0x1f'(x0所以,當(dāng)x1時,函數(shù)有最小值f(1) 6 ax2x(Ⅱ)f'(x) a 當(dāng)a0ax2x1x[2f(x)0,符合要求.當(dāng)a0f(x在區(qū)間[2上是單調(diào)函數(shù),x[2)ax2x101即a 1設(shè)g(x) gxx2x[2)g'(x)0g(x)在區(qū)間[2 g(x)的最小值為g(2) ,所以a 綜上,a的取值范圍是a1,或a0 134(Ⅰ)解:f(x)的定義域為(0,) ………1且f(x)a1ax1 2 ①當(dāng)a0時,f(x)0,故f(x)在(0,)上單調(diào)遞減.從而f(x)沒有極大值,也沒有極小值. 3分②當(dāng)a0f(x0x1af(x和f(x(0,當(dāng)0x1時,f(x)0,f(x) 1是減函數(shù)(0, 1x1時,f(x)0f(x在1,1 所以f(x)在x 時取得最小值,即f() ………4 因為f(xxlnxaxln(axPAGEPAGE58x(0,1a1a(1,af0f↘↗ 故f(x)的單調(diào)減區(qū)間為 );單調(diào)增區(qū)間為(,) 1從而f(x)的極小值為f()1lna;沒有極大值 5a(Ⅱ)g(x)的定義域為R
g(xaeax3 ………6③當(dāng)a0時,顯然g(x)0g(x在R1由(Ⅰ)得,此時f(x)在(,)上單調(diào)遞增,符合題意 ………8a④當(dāng)a0時,g(x在Rf(x在(0,9⑤當(dāng)a0g(x)0
ln() g(x)g(xx(,x0(x0,0↘↗當(dāng)3a0時,x00g(x在(x0f(x在(0, 11a3x00g(x在(x0f(x在(0,上綜上,a的取值范圍是(, (0,) 13(20130模理科解答(1)fx)x2x2a(x1)21
2 f(x)在2,)3存在2,)的子區(qū)間(mn)x(mnfx)3所以f(x)lnxln(ax) axaf(x2x1,x2∈R+xxa xlnxxlnxxlnx(ax)ln(ax)2x1x2ln(x1x2 8(Ⅲ(ⅰ)當(dāng)n1時,由(Ⅱ)ⅱ)假設(shè)當(dāng)nkk∈N*)時命題成即若xx 1,則xlnxxlnx xln ln2k nk1
x2k11x2k1F(xx1lnx1x2lnx2x2k11lnx2k11x2k1lnx2k1,F(xiàn)(x)(x1x2)ln[(x1x2)ln2] =(x1x2)ln(x1x2) (x2k11x2k1)ln(x2k11x2k1)(x1x2...x2k1)ln(x1x2ln(x1x2 x2k11x2k1ln(x2k11x2k1ln2.由假設(shè)可得F(xln2kln2ln2k1,命題成立.所以當(dāng)nk1所以若
xln
ln (i,nN*.……13i
(證法二)若x1x2 x2n那么由(Ⅱ)可得x1lnx1x2lnx2 x2nln(x1x2)ln[(x1x2)ln2] (x2n1x2n)ln[(x2n1x2n)lnPAGEPAGE59f
(x)在3
,f'
03
'(2)3
22a9
a9當(dāng)a1時,f(x)在(2,)上存在單調(diào)遞增區(qū) 6 (2)令f'(x) 0a
1
12
;
1
12f(x在(x1),(x2,)上單調(diào)遞減,在(x1x20a
x11x2f(x)在(1,x2)上單調(diào)遞增,在(x2,4)上單調(diào)遞 8f(x)f(x2f(4)f(1)276a0,f(4)8a40
10 解得a1,x f(x)的最大值為f(x)f(2)
…………13 解:函數(shù)定義域為xx0,且f(x)2x(a2)a(2xa)(x 2 ①當(dāng)a0
a0f(x00x1f(x的單調(diào)遞減區(qū)間為(0,12f(x)0x1f(x的單調(diào)遞增區(qū)間為(1②當(dāng)0a1,即0a2f(x0,得0xax1,2f(x
(0,(0,2f(x0ax1f(x2
(,1)2a1,即a2f(x0f(x的單調(diào)遞增區(qū)間為(0.…72(x1x2)ln(x1x2) (x2n1x2n)ln(x2n1x2n)(x1x2...x2n)ln(x1x2)ln(x1x2) (x2n1x2n)ln(x2n1x2n)lnPAGEPAGE60(Ⅱ)①當(dāng)a0時,由(Ⅰ)f(x的單調(diào)遞減區(qū)間為(0,1f(x在(12]單調(diào)遞增f(x在02f(1a 由于f ) 2 1) 10 f(x在02f(10或f(10解得a1a2f(2)②當(dāng)0a2時,由(Ⅰ)
ln當(dāng)a2f(x在(02f(e4
1420,f(222ln20f(x在02零點
當(dāng)0a2f(x在a,1上單調(diào)遞減,在(12]2f(1)a10x
(,2
f(x)0因為
1a2f
a
)
a
(a2)](aln
a
2a2)0
a內(nèi)必有零點.f(x(0,(0,
(0,)2從而當(dāng)0a2f(x在02上有且只有一個零點綜上所述,0a2或a 或a1時,f(x)在0,2上有且只有一個 13
ln(I)f(x(x1)(x2a1x(1(xf(x)0x11x22a1①當(dāng)2a11,即a1時,在(1f(x0f(x②當(dāng)2a11,即a1時,在(12a1f(x0f(x單調(diào)遞增,在(2a1f(x)0f(x(x1x2x3x4)ln(x1x2x3x4) (x xn)ln(x xn)2ln2 2 (xx...x)ln[(xx x)ln2](n1)ln2ln2n 解f(xxa)exxR所以f(x)(xa1)ex 2令f(x)0,得xa 3xf(xf(xx(,aa(a1,f0f↘↗f(x的單調(diào)減區(qū)間為(,a1);單調(diào)增區(qū)間為(a1,.……6解:結(jié)論:函數(shù)g(x)有且僅有一個零 7g(xf(xax20,xexax2,顯然x0為此方程的一個實數(shù)解.所以x0是函數(shù)g(x)的一個零 9x0時,方程可化簡為exaxF(xexaxF(xexa1,F(xiàn)(x)0,得xa.x(,a(a,0F↘↗PAGEPAGE61的減區(qū)間為(2a1)(II(1)當(dāng)a1時,由(I)f(x在[2(2)當(dāng)a1若2a12,即a3f(x在[2)2若2a12,即a3f(x在[22a1上單調(diào)遞增,在(2a1)2f(2a1
a1(2a2)2
0x2a1時,xaa10x2a1時,f(x)0f(2)2a2a0
a2時,f(x有最小值2a;2a03a2時,f(x綜上所述:當(dāng)a2f(x有最小值2a;當(dāng)a2f(x 1則h(x)f(xg(x)
(x
2bx3 3 b3 h(1) 1
a a h(1)0.即
或b
6 2b3 (1
(Ⅱ)記
g(x),則(x)=(x+a)(bx2+3x)(x≠-fab=8,所以b8,(x)xa
a)(a
x23x)(x≠-(x)1(24x222ax3a2)1(4x3a)(6xa) 令(x)0,得x3a,或x1a 8 F(x的單調(diào)增區(qū)間為(a,);單調(diào)減區(qū)間為(,a)PAGEPAGE62因為a3,所以3a1a x3ax1a時,(x)0,當(dāng)3ax1a時,(x0 函數(shù)(x)的單調(diào)遞增區(qū)間為(a),(a3a),(1a) 單調(diào)遞減區(qū)間為(3a,1a) a[3,),3a9,a1 ①當(dāng)a2,即a126
(x)在[-2,-1(x)在該區(qū)間的最小值為(2)64446a a②當(dāng)2a1時,即6a126(x)在[-2,6
(a16(x)在該區(qū)間的最小值為(a)25a2 6③當(dāng)a1時,即3a66
(x)在[-2,-1]單調(diào)遞減, (x)在該區(qū)間的最小值(18113a,………13a3a68113aa
6a1225a2當(dāng)a12時,最小值為64446a (不綜述者不扣分a所以F(x)的最小值F(x)minF(a)1 11因為aF(x)minF(a1a0xRF(x0,因此方程exax無實數(shù)解.綜上,函數(shù)g(x)有且僅有一個零 13(Ⅰ)解:當(dāng)a1fx)x2
f(x2(x1)(x1) 2(x2由f(0)2,得曲線yf(x)在原點處的切線方程是2xy0 3(Ⅱ)解:f(x)2(xa)(ax1) x2分a0f(x
.x2所以f(x)在(0,)單調(diào)遞增,在(,0)單調(diào)遞減 5(xa)(x1當(dāng)a0,f(x) ax2②當(dāng)a0f(x0
1f(xf(xax(,(x1,x2(x2,f00f↘f(x1↗f(x2↘ 故f(x的單調(diào)減區(qū)間是(a(,;單調(diào)增區(qū)間是(a,).……… 分PAGEPAGE63【7(2014(1)當(dāng)a1f(xx24ln(x1,定義域為(1, 2x22x 2(x1)(xf(x)2x x
x
xxff↘↗所以當(dāng)a1f(x的單調(diào)遞增區(qū)間為(2,,單調(diào)遞減區(qū)間為(1,2因為對任意m[2,e1]PM的傾斜角都是鈍角,所以對任意m[2,e1]PM0,f(m10f(m1mf(x在區(qū)間[2,c1 2(ax2axf(x)2ax xg(x)ax2ax
x
①當(dāng)a0f(x4ln(x1在[2,e1f(x)maxf(201,顯然成立,所以a0②當(dāng)a0g(x)的圖象開口向下,g(0)2g(1)2,x(1,),g(x)0f(x0f(x在(1,f(x在[2,e1上單調(diào)遞減,f(x)maxf(2)4a1a0當(dāng)a0gx的圖象開口向上,且g02g12.fx在區(qū)間1,內(nèi)先遞減再遞增.f2所以fe1即ae124所以0a14③當(dāng)a0f(xf(xPAGEPAGE64綜上a14【8(2014(Ⅰ)f(x2e2x1af(x在點(0,f(0xey10垂直,f(0)ef(0)2eae.所以ae 3(Ⅱ)f(x的定義域是(f(x2e2x1a(1)當(dāng)a0f'(x0f(x的單調(diào)增區(qū)間為((2)當(dāng)a0f'(x0x1lna1f(x的單調(diào)增區(qū)間是(1lna1) f'(x0x1lna1f(x的單調(diào)減區(qū)間是(1lna1)綜上所述,當(dāng)a0
f(x的單調(diào)增區(qū)間為()
當(dāng)a0f(x的單調(diào)增區(qū)間是(1lna1) f(x)的單調(diào)減區(qū)間是(,1lna1) 8 (Ⅲ)x0f(0e11aR.x(0,1f(xe2x1ax11恒成立”e2x(0,1ae2
xg(x)
x(0,1]ag(x)minxg(x)
(2x.g(x0x1x0x(0,1g(x)在(01) g(x0x1x(0,1g(x)在(1,1 g(x)x1g(1)2e2 所以a2e2 又因為a2e3所以實數(shù)a的取值范圍(,2e2] 13x(,x2(x2,x1(x1,f00f↗f(x2↘f(x1↗所以f(x)(1a
(1a)a(a, 9 解:由(Ⅱ)a0時不合題意 10 當(dāng)a0時,由(Ⅱ)f(x在(0,)單調(diào)遞增,在,f 1在(0,f()a
0 設(shè)x0為f(x)的零點,易知x0 x1xxf(x0xxf(x0 f(x在[0,f(0)0,解得1aa0時,若f(x)在[0,)上存在最大值和最小值,a的取值范圍是 12在(0,f(a1f(x在[0,f(0)0,解得a1,或a1所以a0時,若f(x)在[0,)上存在最大值和最小值,a的取值范圍是(,1].綜上,a的取值范圍是(, (0,1] 14解答(1)f'(x)x2x2a(x1)21 2PAGEPAGE65(1)當(dāng)a0時,由(Ⅱ)
f(x在[0,1f(xf(0e1所以當(dāng)a0f(x1(2)當(dāng)0a2e1lna10 由(Ⅱ)可知當(dāng)a0f(x的單調(diào)增區(qū)間是(1lna1) f(x在[0,1]f(xf(0e1f(x)≥1(3)當(dāng)2ea2e3時,可得01lna11 f
在[0, )上為減函數(shù),在(
,1 f(xx1lna1
且f( )e2 1a 1 x[0,1f(x)1成立,只需aalna11 解得a2e2.所以2ea2e2綜上所述,實數(shù)a的取值范圍(2e2【9(18)18(13分)(Ⅰ)f(x
x
的定義域為{x|xR,且x1} 1f(x)
ex(x1)(x
(x1)2 3f(x0x0xf(xf(xx(,0(0,f0f↘↘↗ 4f(x的單調(diào)減區(qū)間為(1(10);單調(diào)增區(qū)間為(0)f(x)在
2,3PAGEPAGE66所以當(dāng)x0時,函數(shù)f(x)有極小值f(0) 5(Ⅱ)g(x存在兩個零點.由題意,函數(shù)g(x) 1x2x1因為x2x1x1)230 所以函數(shù)g(x)的定義域為R 6 ex(x2x1)ex(2x exx(xg(x)
(x2x
(x2x1)2 7g(x0x10x21xg(xg(x)x0100↗↘↗g(x的單調(diào)減區(qū)間為0,1;單調(diào)增區(qū)間為(0(1x0時,函數(shù)g(x)有極大值g(0)0;當(dāng)x1g(x)有極小值g(1e1 93g(x在(,0)g(0)0所以對于任意x(,0),g(x)0 10g(x在(0,1g(0)0所以對于任意x(0,1),g(x)0 11g(x(1g(1e10g(2e2, ,所以函數(shù)g(x)在(1,)上僅存在一個x0,使得函數(shù)g(x0)0 12存在3
,的子區(qū)間(mn)x(mn
'(x)f(x)在23
f'3
0
'(2)3
22a9
a9 當(dāng)a1時,f(x)在2)上存在單調(diào)遞增區(qū) 6 (2)令f'(x) 0a
112
;x2112f(x在(x1),(x2,)上單調(diào)遞減,在(x1x20a x11x2f(x)在(1,x2)上單調(diào)遞增,在(x2,4)上單調(diào)遞 8f(x)f(x2f(4f(1276a0,f(48a40 10 解得a1,x f(x)的最大值為f(x)f(2) 13 當(dāng)a0時,f(x)xln f(1)1ln1 1f'(x)1x
f'(1 2PAGEPAGE67故函數(shù)g(x)存在兩個零點(即0和x0 1310】(201418)(Ⅰ)定義域為0f'(x)lnx
f'(x0
xe
f'(xf(xxe1e(1,)f0f↘↗f(x的單調(diào)減區(qū)間為(01,單調(diào)增區(qū)間為(1———6eg(xlnx1xx
————7g'(x)1
x
———————8 g'(xg(x)x1f0f↘↗g(xg(11所以曲線yf(x)在點(1,f(1))處的切線方程y 3 ax2(a1)x (ax1)(x(II)f'(x)ax(a1)
(x0)………4a0PAGEPAGE681lnx 1在x0時恒成立 1x所以,當(dāng)k1lnx1kxxlnx1kxxlnxkx1所以,當(dāng)k1時,有f(x)kx1. g(xf(x(kx1xlnxkxg'(x)lnx1g'(x0xek
————————9g'(xg(x)xekf0f↘↗g(x)g(ek1)
———————10當(dāng)k1ek11,所以1ek1g(x
即當(dāng)k1時,f(x)kx ——————13解:當(dāng)aπf(x)xπ)sinxcosxx(022
)c
1f'(x0x2
2fxfxf'(xx10x1f'(xx10x 1
5②a0f'(x0x1xai)當(dāng)0a11a函數(shù)f(x的遞增區(qū)間為
…………6 , ,,遞減區(qū)間 7x1a1aa+-+增減增(1,)ii)a01a
, 在0,1上f'(x)0,在(1,)上f'(x) 8函數(shù)f(x)的遞增區(qū)間為0,1,遞減區(qū)間為(1, 91由(Ⅱ)知,當(dāng)a 時,f()在(0,1)上是函數(shù),在(1,2)上是減函數(shù),4所以Mf(1)9 118x[1,2]g(x)8x[12]x22bx79 g(x在[1,2]上的最大值大于等于8g(1)所以有 即 即
解得:b 13PAGEPAGE69x(0,π)2π2x200f0f4f(01f(π)1所以函數(shù)f(x)的值域為(1,1) 5f'(xxacosxπaπf(x),f'(x)2x(0,π)2π2a(a,x00f00ff
9 (a, 的單調(diào)增區(qū)間為(,a),單調(diào)減區(qū)間為(0,) ②當(dāng)aπf(x),f'(x)x(0,π)2π2x0f0ff
13 的單調(diào)增區(qū)間為(,π),單調(diào)減區(qū)間為(0,) 解:(I)ylnx∴y'1lnl的斜率ky|x1 PAGEPAGE70l的方程為yx證明:(II)令fxx
l
f'(x2x11(2x1)(x ∴f(x(0,1上單調(diào)遞減,在(1,上單調(diào)遞增,又f(1x(0,1時,f(x)0lnxxxx(1時,f(x)0lnxxx即除切點(10之外,曲線C在直線l的下方.(I)所以g'(xexx[12]g'(x[12ae1當(dāng)a 時,g'(x)0,所以g(x)在[0,1]上單調(diào)遞增12g(x)在[0,1g(0)1b整理得bx
[2,2
從而有bx1 x 3所以b的取值范圍是(, 132解:(I)fx)2x33得f'(x6x2令f'(x)0,得x 或x 2 f(2)10,f(22,f(22,f(1) 2)2(II)P1,t的直線與曲線yf(x相切于點x0y0,則y2x33x,且切線斜率為k6x23, 所以切線方程為yy6x23xx 0ty06x231x00 整理得4x36x2t3 g(x4x36x2t則“P1,t的直線與曲線yf(x相切”等價于“g(x3個不同零點g'(x)12x212x12xxg(x)g'(x的情況如下:x0100ttPAGEPAGE71所以,g0tg(x的極大值,g(1)tg(x的極小值,PAGEPAGE72解:(I)1,cf(x)ax21(a0f(x)2axk12a2g(xx3bxg(x)=3x2bk3b,2a3b2f(1a1g(11b,a11b,即aba3b4( a24b,h(x)f(x)g(x)x3ax21a2x4h(x3x22ax1a2,令h(x0xaxa4a0,aa
2
6
①若1
,即a≤2時,最大值為h(1)a ②若a1a,即2a6時,最大值為ha 2 ③若1a時,即a≥6時,最大值為ha1 2 綜上所述:當(dāng)a0,2時,最大值為h(1)a ;當(dāng)a2,時,最大值4ha12 g(0)t30t3時,此時g(x在區(qū)間11,上分別至多1個零點,所以g(x)至多有2個零點.g(1)t10t1g(x在區(qū)間,0和0,上分別至多1個零點,所以g(x至多有2個零點.g(0)t30g(1)t10時,即3t1時,因為g(1)tg(2)t110
7g(x分別在區(qū)間1,0,0,11,2上恰有一個零點,由于g(x在區(qū)間,01,上單調(diào),所以g(x,01,上恰有一個零點.綜上可知,當(dāng)過點P1,t存在3條直線與曲線yf(x)相切時,t的取值范圍2,1A1,23條直線與曲線yf(x相切;B2,10存在2條直線與曲線yf(x)相切;過點C0,21條直線與曲線yf(x相切.a(chǎn)ex(x a(x ,xR 2(ex 當(dāng)a1f(x,f'(xx(,2(2,f0f(↘↗所以,當(dāng)a1時,函數(shù)f(x)的極小值為 6a(x(Ⅱ)F'(x)f'(x) .①當(dāng)a0F(xF'(xx(,2(2,f0f(↘↗因為F(1)10 8若使函數(shù)F(x)沒有零點,需且僅需F(2)a10,解得ae2 9所以此時e2a0 10x(,2(2,f0x(,2(2,f0f(↗↘ eF(2)F(10,F
a) aa aa
0 12 13綜上所述,所求實數(shù)a的取值范圍是e2a01解(Ⅰ)當(dāng)a0時,f(x)lnx (x0x xf'(x) . 所以,當(dāng)0x1f'(x0x1f'(x0所以,當(dāng)x1時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電力合同范本模板
- 適合小學(xué)英語的試卷
- 設(shè)備驅(qū)動程序市場分析及競爭策略分析報告
- 急救理論知識試題庫及答案
- 單獨招生機(jī)電類模擬試題(附參考答案)
- 古街商鋪轉(zhuǎn)讓合同范本
- 個人勞務(wù)合同范本保安
- 廠房搬運服務(wù)合同范本
- 熱工基礎(chǔ) ??荚囶}(附參考答案)
- 化工基礎(chǔ)試題庫+答案
- 中小學(xué)領(lǐng)導(dǎo)班子包級包組包班制度
- 汽車掛靠經(jīng)營合同協(xié)議書模板
- 基坑土方開挖專項施工方案(完整版)
- 電網(wǎng)工程設(shè)備材料信息參考價(2024年第四季度)
- 2025年江蘇農(nóng)牧科技職業(yè)學(xué)院高職單招職業(yè)技能測試近5年常考版參考題庫含答案解析
- 數(shù)據(jù)中心運維服務(wù)投標(biāo)方案(技術(shù)標(biāo))
- 2024-2025學(xué)年山東省濰坊市高一上冊1月期末考試數(shù)學(xué)檢測試題(附解析)
- 電玩城培訓(xùn)課件
- 2025年全年日歷-含農(nóng)歷、國家法定假日-帶周數(shù)豎版
- 小學(xué)生播音員課件
- 2024年重大事項內(nèi)部會審制度(3篇)
評論
0/150
提交評論