版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第第頁遼寧省大連市名校2023-2024學(xué)年高三上學(xué)期10月高考適應(yīng)性測試(一)數(shù)學(xué)試題(含答案)絕密★使用前
大連市名校2023-2024學(xué)年高三上學(xué)期10月高考適應(yīng)性測試(一)
數(shù)學(xué)
考生注意:
1.本試卷共150分,考試時(shí)間120分鐘。分四大題,22小題,共4頁
2.請將各題答案填寫在答題卡上。
3.本試卷主要考試內(nèi)容:高考全部內(nèi)容
一、單選題(每題只有一個(gè)選項(xiàng)是正確答案,每題5分,共40分)
1.已知雙曲線的左、右焦點(diǎn)分別為、,點(diǎn)在雙曲線的右支上,點(diǎn)為的中點(diǎn),為坐標(biāo)原點(diǎn),,,的面積為,則該雙曲線的方程為()
A.B.C.D.
2.已知函數(shù),則下列說法正確的是
①函數(shù)圖象的一條對稱軸的方程為;②函數(shù)在閉區(qū)間上單調(diào)遞增;
③函數(shù)圖象的一個(gè)對稱中心為點(diǎn);④函數(shù)的值域?yàn)?
A.①②B.③④C.①③D.②④
3.定義在R上的函數(shù)和的導(dǎo)函數(shù)分別為,,則下面結(jié)論正確的是
①若,則函數(shù)的圖象在函數(shù)的圖象上方;
②若函數(shù)與的圖象關(guān)于直線對稱,則函數(shù)與的圖象關(guān)于點(diǎn)(,0)對稱;
③函數(shù),則;
④若是增函數(shù),則.
A.①②B.①②③C.③④D.②③④
4.的展開式中的系數(shù)為()
A.B.C.D.
5.已知是橢圓和雙曲線的公共焦點(diǎn),P是它們的一個(gè)公共點(diǎn),且,記橢圓和雙曲線的離心率分別為,則的值為()
A.4B.3C.2D.1
6.設(shè)函數(shù),若,,,則()
A.B.
C.D.
7.將函數(shù)的圖象向左平移個(gè)單位長度后,得到函數(shù)g(x)的圖象,若g(x)滿足,則的可能值為()
A.B.C.D.
8.如圖,函數(shù)、、的圖象和直線將平面直角坐標(biāo)系的第一象限分成八個(gè)部分:①②③④⑤⑥⑦⑧.若冪函數(shù)的圖象經(jīng)過的部分是④⑧,則可能是()
A.y=x2B.C.D.y=x-2
二、多選題(每題至少有一個(gè)選項(xiàng)為正確答案,少選且正確得3分,每題5分,共20分)
9.已知,若函數(shù)在處取得極小值,則下列結(jié)論正確的是()
A.當(dāng)時(shí),B.當(dāng)時(shí),
C.D.
10.下列條件中,使M與A,B,C一定共面的是()
A.B.
C.D.
11.如圖,小明、小紅分別從街道的、處出發(fā),到位于處的老年公寓參加志愿者活動(dòng),則()
A.小紅到老年公寓可以選擇的最短路徑條數(shù)為
B.小明到老年公寓可以選擇的最短路徑條數(shù)為
C.若小明不經(jīng)過處,則小明到老年公寓可以選擇的最短路徑條數(shù)為
D.若小明先到處與小紅會(huì)合,再與小紅一起到老年公寓參加志愿者活動(dòng),則小明到老年公寓可以選擇的最短路徑條數(shù)為
12.已知函數(shù)的定義域?yàn)?,且.若的圖象關(guān)于點(diǎn)對稱,,則()
A.B.的圖象關(guān)于直線對稱
C.D.
三、填空題(每題5分,共20分)
13.已知F是雙曲線的右焦點(diǎn),直線與雙曲線E交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),P,Q分別為,的中點(diǎn),且,則雙曲線E的離心率為.
14.為了宣傳校園文化,讓更多的學(xué)生感受到校園之美,某校學(xué)生會(huì)組織了6個(gè)小隊(duì)在校園最具有代表性的3個(gè)地點(diǎn)進(jìn)行視頻拍攝,若每個(gè)地點(diǎn)至少有1支小隊(duì)拍攝,則不同的分配方法有種(用數(shù)字作答)
15.已知,則.
16.已知是拋物線的焦點(diǎn),,是該拋物線上的兩點(diǎn),,則線段的中點(diǎn)到軸的距離為.
四、解答題(17題10分,其余每題12分,共70分)
17.如圖,已知四棱錐,是等邊三角形,,,,,是的中點(diǎn).
(1)求證:直線平面;
(2)求直線與平面所成角的值.
18.的內(nèi)角A,B,C的對邊分別為a,b,c,已知.
(1)求B;
(2)若,的周長的取值范圍.
19.已知雙曲線(,)的焦距為,且雙曲線右支上一動(dòng)點(diǎn)到兩條漸近線,的距離之積為.
(1)求雙曲線的方程;
(2)設(shè)直線是曲線在點(diǎn)處的切線,且分別交兩條漸近線,于、兩點(diǎn),為坐標(biāo)原點(diǎn),證明:面積為定值,并求出該定值.
20.如圖(1),六邊形是由等腰梯形和直角梯形拼接而成,且,,沿進(jìn)行翻折,得到的圖形如圖(2)所示,且.
(1)求二面角的余弦值;
(2)求四棱錐外接球的體積.
21.已知函數(shù),
(1)判斷函數(shù)的奇偶性,并說明理由;
(2)判斷函數(shù)在區(qū)間上的單調(diào)性.
22.已知數(shù)列為等差數(shù)列,,,前項(xiàng)和為,數(shù)列滿足,求證:
(1)數(shù)列為等差數(shù)列;
(2)數(shù)列中任意三項(xiàng)均不能構(gòu)成等比數(shù)列.大連市名校2023-2024學(xué)年高三上學(xué)期10月高考適應(yīng)性測試(一)
數(shù)學(xué)參考答案
一、單選題(每題只有一個(gè)選項(xiàng)是正確答案,每題5分,共40分)
12345678
CACBCDBB
二、多選題(每題至少有一個(gè)選項(xiàng)為正確答案,少選且正確得3分,每題5分,共20分)
9101112
ADACABDBC
三、填空題(每題5分,共20分)
13.14.54015.16.
四、解答題(17題10分,其余每題12分,共70分)
17.【詳解】(1)取的中點(diǎn),連接、,
根據(jù)中位線定理,,且,
又,所以,,則四邊形為平行四邊形,∴,
∵平面,平面,∴平面;
(2)以為原點(diǎn),、、過且垂直底面的直線分別為、、軸建立空間直角坐標(biāo)系,
設(shè),則、、、,設(shè),
由,,,
上面聯(lián)立解方程組得,,,
故點(diǎn),所以,得到,
平面的法向量為,由.
故直線與平面所成角的正弦值為.
18.【詳解】(1)
解:由正弦定理得.
因?yàn)?,所以?/p>
由,可得,
所以.
因?yàn)椋裕?/p>
所以,
(2)
解:由于,,有正弦定理,
所以,,
由于,
因?yàn)?,所以?/p>
因此
19.【詳解】解:(1)雙曲線(,)的漸近線方程為和,
由動(dòng)點(diǎn)到兩條漸近線,的距離之積為,
則,
又,即,
解得,,
則雙曲線的方程為.
(2)證明:設(shè)直線的方程為,
與雙曲線的方程聯(lián)立,可得,
直線與雙曲線的右支相切,可得,可得,
設(shè)直線與軸交于,則,
,
又雙曲線的漸近線方程為,
聯(lián)立,可得,
同理可得,
則.
即有面積為定值2.
20.【詳解】(1)解:在等腰梯形中,作于,
則,所以,
連接,則,
因?yàn)椋?,所以,所以?/p>
又因?yàn)?,且,平面,所以平面?/p>
又由平面,所以,
因?yàn)榍?,平面,所以平面?/p>
又因?yàn)槠矫妫裕?/p>
因?yàn)?,所以就是二面角的平面角?/p>
在直角中,,
所以二面角的余弦值為.
(2)解:取的中點(diǎn),連接,可得證四邊形、均為平行四邊形,
所以,所以為等腰梯形的外心,
取的中點(diǎn),連接,可得,
因?yàn)槠矫?,所以平面?/p>
又因?yàn)椋詾樗睦忮F外接球的球心,
所以球的半徑為,所以.
21.【詳解】(1)令,即,
解得或,所以的定義域?yàn)椋?/p>
而
,
所以為奇函數(shù).
(2)令,則,
又,
設(shè),且,
則
因?yàn)?,且?/p>
所以,,
因此,即在上單調(diào)遞增,
又因?yàn)樵谏蠁握{(diào)遞增,
所以在上單調(diào)遞增.
22.【詳解】(1)解:因?yàn)閿?shù)列為等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑混凝土石料運(yùn)輸合同
- 標(biāo)準(zhǔn)存款合同范本
- 商鋪?zhàn)赓U合同解除協(xié)議格式范本
- 2024農(nóng)村建房合同范本
- 贈(zèng)與合同范本大全
- 筆記本電腦選購協(xié)議
- 農(nóng)村土地使用權(quán)買賣合同樣本
- 房屋出租代理委托合同范本樣本
- 股票交易委托代理協(xié)議
- 代理電力收費(fèi)協(xié)議
- 《中華民族共同體概論》考試復(fù)習(xí)題庫(含答案)
- 種植修復(fù)治療知情同意書
- Module 5 外研版英語九(上)模塊主題寫作詳解與訓(xùn)練
- 第二章攪拌摩擦焊
- 內(nèi)分泌科醫(yī)師培養(yǎng)細(xì)則
- 蛋白質(zhì)與酶工程復(fù)習(xí)題 金
- 五金件通用檢驗(yàn)標(biāo)準(zhǔn)
- kummell 病ppt課件
- 小班綜合活動(dòng)《出生的秘密》
- 習(xí)題參考答案
- 綠化養(yǎng)護(hù)報(bào)價(jià)表(共8頁)
評論
0/150
提交評論