江蘇省南京市梅山高級中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第1頁
江蘇省南京市梅山高級中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第2頁
江蘇省南京市梅山高級中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第3頁
江蘇省南京市梅山高級中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第4頁
江蘇省南京市梅山高級中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

江蘇省南京市梅山高級中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)拋物線的焦點(diǎn)為F,準(zhǔn)線為l,P為拋物線上一點(diǎn),,A為垂足.如果直線AF的斜率是,那么()A B.C.16 D.82.在等差數(shù)列中,已知,則()A.4 B.8C.3 D.63.2021年4月29日,中國空間站天和核心艙發(fā)射升空,這標(biāo)志著中國空間站在軌組裝建造全面展開,我國載人航天工程“三步走”戰(zhàn)略成功邁出第三步.到今天,天和核心艙在軌已經(jīng)九個(gè)多月.在這段時(shí)間里,空間站關(guān)鍵技術(shù)驗(yàn)證階段完成了5次發(fā)射、4次航天員太空出艙、1次載人返回、1次太空授課等任務(wù).一般來說,航天器繞地球運(yùn)行的軌道近似看作為橢圓,其中地球的球心是這個(gè)橢圓的一個(gè)焦點(diǎn),我們把橢圓軌道上距地心最近(遠(yuǎn))的一點(diǎn)稱作近(遠(yuǎn))地點(diǎn),近(遠(yuǎn))地點(diǎn)與地球表面的距離稱為近(遠(yuǎn))地點(diǎn)高度.已知天和核心艙在一個(gè)橢圓軌道上飛行,它的近地點(diǎn)高度大約351km,遠(yuǎn)地點(diǎn)高度大約385km,地球半徑約6400km,則該軌道的離心率為()A. B.C. D.4.當(dāng)時(shí),不等式恒成立,則實(shí)數(shù)的取值范圍為()A. B.C. D.5.等比數(shù)列中,,則()A. B.C.2 D.46.已知圓與圓外切,則()A. B.C. D.7.已知過點(diǎn)的直線l與圓相交于A,B兩點(diǎn),則的取值范圍是()A. B.C. D.8.①直線在軸上的截距為;②直線的傾斜角為;③直線必過定點(diǎn);④兩條平行直線與間的距離為.以上四個(gè)命題中正確的命題個(gè)數(shù)為()A. B.C. D.9.已知圓的方程為,圓的方程為,其中.那么這兩個(gè)圓的位置關(guān)系不可能為()A.外離 B.外切C.內(nèi)含 D.內(nèi)切10.如圖是函數(shù)的導(dǎo)數(shù)的圖象,則下面判斷正確的是()A.在內(nèi)是增函數(shù)B.在內(nèi)是增函數(shù)C.在時(shí)取得極大值D.在時(shí)取得極小值11.若直線先向右平移一個(gè)單位,再向下平移一個(gè)單位,然后與圓相切,則c的值為()A.8或-2 B.6或-4C.4或-6 D.2或-812.若是等差數(shù)列的前項(xiàng)和,,則()A.13 B.39C.45 D.21二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)數(shù)列滿足,則an=________14.過拋物線的準(zhǔn)線上任意一點(diǎn)做拋物線的切線,切點(diǎn)分別為,則A點(diǎn)到準(zhǔn)線的距離與點(diǎn)到準(zhǔn)線的距離之和的最小值為___________15.若圓C的方程為,點(diǎn)P是圓C上的動點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),則的最大值為______16.設(shè)橢圓,點(diǎn)在橢圓上,求該橢圓在P處的切線方程______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓關(guān)于直線對稱,且圓心C在軸上.(1)求圓C的方程;(2)直線與圓C交于A、B兩點(diǎn),若為等腰直角三角形,求直線的方程.18.(12分)已知數(shù)列滿足,(1)設(shè),求證數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)設(shè),數(shù)列的前n項(xiàng)和為,是否存在正整數(shù)m,使得對任意的都成立?若存在,求出m的最小值;若不存在,試說明理由19.(12分)設(shè)橢圓方程為,短軸長,____________.請?jiān)冖倥c雙曲線有相同的焦點(diǎn),②離心率,③這三個(gè)條件中任選一個(gè)補(bǔ)充在上面的橫線上,完成以下問題.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)求以點(diǎn)為中點(diǎn)的弦所在的直線方程.20.(12分)已知等差數(shù)列滿足(1)求的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和21.(12分)書籍是精神世界的入口,閱讀讓精神世界閃光,閱讀逐漸成為許多人的一種生活習(xí)慣,每年4月23日為世界讀書日.某研究機(jī)構(gòu)為了解當(dāng)?shù)啬贻p人的閱讀情況,通過隨機(jī)抽樣調(diào)查了100位年輕人,對這些人每天的閱讀時(shí)間(單位:分鐘)進(jìn)行統(tǒng)計(jì),得到樣本的頻率分布直方圖,如圖所示:(1)求的值;(2)為了進(jìn)一步了解年輕人的閱讀方式,研究機(jī)構(gòu)采用分層抽樣的方法從每天閱讀時(shí)間位于,和的年輕人中抽取5人,再從中任選2人進(jìn)行調(diào)查,求其中至少有1人每天閱讀時(shí)間位于的概率.22.(10分)在一次重大軍事聯(lián)合演習(xí)中,以點(diǎn)為中心的海里以內(nèi)海域被設(shè)為警戒區(qū)域,任何船只不得經(jīng)過該區(qū)域.已知點(diǎn)正北方向海里處有一個(gè)雷達(dá)觀測站,某時(shí)刻測得一艘勻速直線行駛的船只位于點(diǎn)北偏東,且與點(diǎn)相距海里的位置,經(jīng)過小時(shí)又測得該船已行駛到位于點(diǎn)北偏東,且與點(diǎn)相距海里的位置(1)求該船的行駛速度(單位:海里/小時(shí));(2)該船能否不改變方向繼續(xù)直線航行?請說明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由題可得方程,進(jìn)而可得點(diǎn)坐標(biāo)及點(diǎn)坐標(biāo),利用拋物線定義即求【詳解】∵拋物線方程為,∴焦點(diǎn)F(2,0),準(zhǔn)線l方程為x=?2,∵直線AF的斜率為,直線AF的方程為,由,可得,∵PA⊥l,A為垂足,∴P點(diǎn)縱坐標(biāo)為,代入拋物線方程,得P點(diǎn)坐標(biāo)為,∴.故選:D.2、B【解析】根據(jù)等差數(shù)列的性質(zhì)計(jì)算出正確答案.【詳解】由等差數(shù)列的性質(zhì)可知,得.故選:B3、A【解析】根據(jù)遠(yuǎn)地點(diǎn)和近地點(diǎn),求出軌道即橢圓的半長軸和半焦距,即可求得答案.【詳解】設(shè)橢圓的半長軸為a,半焦距為c.則根據(jù)題意得;解得,故該軌道即橢圓的離心率為,故選:A4、A【解析】設(shè),對實(shí)數(shù)的取值進(jìn)行分類討論,求得,解不等式,綜合可得出實(shí)數(shù)的取值范圍.【詳解】設(shè),其中.①當(dāng)時(shí),即當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞增,則,解得,此時(shí)不存在;②當(dāng)時(shí),,解得;③當(dāng)時(shí),即當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞減,則,解得,此時(shí)不存在.綜上所述,實(shí)數(shù)的取值范圍是.故選:A.5、D【解析】利用等比數(shù)列的下標(biāo)特點(diǎn),即可得到結(jié)果.【詳解】∵,∴,∴,∴.故選:D6、D【解析】根據(jù)兩圓外切關(guān)系,圓心距離等于半徑的和列方程求參數(shù).【詳解】由題設(shè),兩圓圓心分別為、,半徑分別為1、r,∴由外切關(guān)系知:,可得.故選:D.7、D【解析】經(jīng)判斷點(diǎn)在圓內(nèi),與半徑相連,所以與垂直時(shí)弦長最短,最長為直徑【詳解】將代入圓方程得:,所以點(diǎn)在圓內(nèi),連接,當(dāng)時(shí),弦長最短,,所以弦長,當(dāng)過圓心時(shí),最長等于直徑8,所以的取值范圍是故選:D8、B【解析】由直線方程的性質(zhì)依次判斷各命題即可得出結(jié)果.【詳解】對于①,直線,令,則,直線在軸上的截距為-,則①錯(cuò)誤;對于②,直線的斜率為,傾斜角為,則②正確;對于③直線,由點(diǎn)斜式方程可知直線必過定點(diǎn),則③正確;對于④,兩條平行直線與間的距離為,則④錯(cuò)誤.故選:B.9、C【解析】求出圓心距的取值范圍,然后利用圓心距與半徑的和差關(guān)系判斷.【詳解】由兩圓的標(biāo)準(zhǔn)方程可得,,,;則,所以兩圓不可能內(nèi)含.故選:C.10、B【解析】根據(jù)圖象判斷的單調(diào)性,由此求得的極值點(diǎn),進(jìn)而確定正確選項(xiàng).【詳解】由圖可知,在區(qū)間上,單調(diào)遞減;在區(qū)間上,單調(diào)遞增.所以不是的極值點(diǎn),是的極大值點(diǎn).所以ACD選項(xiàng)錯(cuò)誤,B選項(xiàng)正確.故選:B11、A【解析】求出平移后的直線方程,再利用直線與圓相切并借助點(diǎn)到直線距離公式列式計(jì)算作答.【詳解】將直線先向右平移一個(gè)單位,再向下平移一個(gè)單位所得直線方程為,因直線與圓相切,從而得,即,解得或,所以c的值為8或-2.故選:A12、B【解析】先根據(jù)等差數(shù)列的通項(xiàng)公式求出,然后根據(jù)等差數(shù)列的求和公式及等差數(shù)列的下標(biāo)性質(zhì)求得答案.【詳解】設(shè)等差數(shù)列的公差為d,則,則.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先由題意得時(shí),,再作差得,驗(yàn)證時(shí)也滿足【詳解】①當(dāng)時(shí),;當(dāng)時(shí),②①②得,當(dāng)也成立.即故答案為:14、8【解析】設(shè),,,,由可得,根據(jù)導(dǎo)數(shù)的幾何意義求得兩切線的方程,聯(lián)立求得點(diǎn)的坐標(biāo),再根到準(zhǔn)線的距離轉(zhuǎn)化為到焦點(diǎn)的距離,三點(diǎn)共線時(shí)距離最小,進(jìn)而求出最小值【詳解】解:設(shè),,,,由可得,所以,所以直線,的方程分別為:,,聯(lián)立,解得,即,,又有在準(zhǔn)線上,所以,所以,設(shè)直線的方程為:,代入拋物線的方程可得:,可得,所以可得,即直線恒過點(diǎn),即直線恒過焦點(diǎn),即直的方程為:,代入拋物線的方程:,,所以,點(diǎn)到準(zhǔn)線的距離與點(diǎn)到準(zhǔn)線的距離之和,所以當(dāng)時(shí),距離之和最小且為8,這時(shí)直線平行于軸故答案為:815、##【解析】根據(jù)點(diǎn)與圓的位置關(guān)系求得正確答案.【詳解】圓的方程可化為,所以圓心為,半徑.由于,所以原點(diǎn)在圓外,所以最大值為.故答案為:16、【解析】由題意可知切線的斜率存在,所以設(shè)切線方程為,代入橢圓方程中整理化簡,令判別式等于零,可求出的值,從而可求得切線方程【詳解】由題意可知切線的斜率存在,所以設(shè)切線方程為,將代入中得,,化簡整理得,令,化簡整理得,即,解得,所以切線方程為,即,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)根據(jù)題意得到等量關(guān)系,求出,,進(jìn)而求出圓的方程;(2)結(jié)合第一問求出的圓心和半徑,及題干條件得到圓心到直線的距離為,列出方程,求出的值,進(jìn)而得到直線方程【小問1詳解】由題意得:直線過圓心,即,且,解得:,,所以圓C的方程為;【小問2詳解】的圓心為,半徑為2,由題意得:,圓心到直線的距離為,即,解得:或,所以直線的方程為:或.18、(1);(2)存在,3【解析】(1)結(jié)合遞推關(guān)系可證得bn+1-bn1,且b1=1,可證數(shù)列{bn}為等差數(shù)列,據(jù)此可得數(shù)列的通項(xiàng)公式;(2)結(jié)合通項(xiàng)公式裂項(xiàng)有求和有,再結(jié)合條件可得,即求【詳解】(1)證明:∵,又由a1=2,得b1=1,所以數(shù)列{bn}是首項(xiàng)為1,公差為1的等差數(shù)列,所以bn=1+(n-1)×1=n,由,得(2)解:∵,,所以,依題意,要使對于n∈N*恒成立,只需,解得m≥3或m≤-4又m>0,所以m≥3,所以正整數(shù)m的最小值為319、(1)答案見解析,.(2).【解析】(1)若選①:求得雙曲線得雙曲線的焦點(diǎn)得出橢圓的,再由,可求得橢圓的標(biāo)準(zhǔn)方程;若選②:根據(jù)已知條件和橢圓的離心率可求得,從而得橢圓的標(biāo)準(zhǔn)方程;若選③:由已知建立方程,求解可求得,從而得橢圓的標(biāo)準(zhǔn)方程.(2)設(shè)直線的斜率為k,所求的直線方程為,代入橢圓的方程并整理得,設(shè)直線與橢圓的交點(diǎn)為,由根與系數(shù)的關(guān)系和中點(diǎn)坐標(biāo)公式可求得答案.【小問1詳解】解:若選①:由雙曲線得雙曲線的焦點(diǎn)和,因?yàn)闄E圓與雙曲線有相同的焦點(diǎn),所以橢圓的,又,所以,所以,所以橢圓的標(biāo)準(zhǔn)方程為;若選②:因?yàn)?,所以,又離心率,所以,即,解得,所以橢圓的標(biāo)準(zhǔn)方程為;若選③:因?yàn)?,所以,即,又,解得,,所以橢圓的標(biāo)準(zhǔn)方程為;【小問2詳解】解:由題意得直線的斜率必存在,設(shè)直線的斜率為k,所求的直線方程為,代入橢圓的方程并整理得,設(shè)直線與橢圓的交點(diǎn)為,則,因?yàn)辄c(diǎn)為AB中點(diǎn),所以,解得,所以所求的直線方程為,即.20、(1)(2)【解析】(1)設(shè)等差數(shù)列的公差為d,由題意得列出方程組,可求得的值,代入公式,即可得答案.(2)由(1)可得,利用等比數(shù)列的定義,可證數(shù)列為等比數(shù)列,結(jié)合前n項(xiàng)和公式,即可得答案.【小問1詳解】設(shè)等差數(shù)列的公差為d,由題意得,解得,所以通項(xiàng)公式【小問2詳解】由(1)可得,,又,所以數(shù)列是以4為首項(xiàng),4為公比的等比數(shù)列,所以21、(1)(2)【解析】(1)由頻率之和為1求參數(shù).(2)由分層抽樣的比例可得抽取的5人中,和分別為:1人,2人,2人,再應(yīng)用列舉法寫出所有基本事件,根據(jù)古典概型的概率計(jì)算即可.小問1詳解】根據(jù)頻率分布直方圖得:,解得;【小問2詳解】由于,和的頻率之比為:,故抽取的5人中,,和別為:1人,2人,2人,記的1人為,的2人為,,的2人為,,故隨機(jī)抽取2人共有,,,,,,,,,10種,其中至少有1人每天閱讀時(shí)間位于的包含,,,,,,共7種,故概率.22、(1)海里/小時(shí);(2)該船要改變航行方向,理由見解析.【解析】(1)設(shè)一個(gè)單位為海里,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論