江蘇省蘇州五中2024屆高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
江蘇省蘇州五中2024屆高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
江蘇省蘇州五中2024屆高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
江蘇省蘇州五中2024屆高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
江蘇省蘇州五中2024屆高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江蘇省蘇州五中2024屆高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.動點P,Q分別在拋物線和圓上,則的最小值為()A. B.C. D.2.、是橢圓的左、右焦點,點在橢圓上,,過作的角平分線的垂線,垂足為,則的長為A.1 B.2C.3 D.43.若,,則下列各式中正確的是()A. B.C. D.4.已知雙曲線左右焦點為,過的直線與雙曲線的右支交于,兩點,且,若線段的中垂線過點,則雙曲線的離心率為()A.3 B.2C. D.5.函數(shù)的導函數(shù)的圖像如圖所示,則()A.為的極大值點B.為的極大值點C.為的極大值點D.為的極小值點6.若,,則有()A. B.C. D.7.設函數(shù),則()A.4 B.5C.6 D.78.若動圓的圓心在拋物線上,且恒過定點,則此動圓與直線()A.相交 B.相切C.相離 D.不確定9.已知集合,則()A. B.C. D.10.雙曲線:的一條漸近線與直線垂直,則它的離心率為()A. B.C. D.11.若關于x的方程有解,則實數(shù)a的取值范圍為()A. B.C. D.12.定義在R上的函數(shù)與函數(shù)在上具有相同的單調(diào)性,則k的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.命題“任意,”為真命題,則實數(shù)a的取值范圍是______.14.已知雙曲線:,斜率為的直線與E的左右兩支分別交于A,B兩點,點P的坐標為,直線AP交E于另一點C,直線BP交E于另一點D.若直線CD的斜率為,則E的離心率為___________15.某人實施一項投資計劃,從2021年起,每年1月1日,把上一年工資的10%投資某個項目.已知2020年他的工資是10萬元,預計未來十年每年工資都會逐年增加1萬元;若投資年收益是10%,一年結(jié)算一次,當年的投資收益自動轉(zhuǎn)入下一年的投資本金,若2031年1月1日結(jié)束投資計劃,則他可以一次性取出的所有投資以及收益應有__________萬元.(參考數(shù)據(jù):,,)16.某校老年、中年和青年教師的人數(shù)見如表,采用分層抽樣的方法調(diào)查教師的身體狀況,在抽取的樣本中,青年教師有人,則該樣本的老年教師人數(shù)為______.類別老年教師中年教師青年教師合計人數(shù)900180016004300三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列{an}滿足*(1)求數(shù)列{an}的通項公式;(2)求數(shù)列{an}的前n項和Sn18.(12分)在等差數(shù)列中,(1)求數(shù)列的通項公式;(2)設,求19.(12分)在平面直角坐標系中,橢圓的離心率為,且點在橢圓C上(1)求橢圓C的標準方程;(2)過點的直線與橢圓C交于A,B兩點,試探究直線上是否存在定點Q,使得為定值.若存在,求出定點Q的坐標及實數(shù)的值;若不存在,請說明理由20.(12分)設圓的圓心為﹐直線l過點且與x軸不重合,直線l交圓于A,B兩點.過作的平行線交于點P.(1)求點P的軌跡方程;(2)設點P的軌跡為曲線E,直線l交E于M,N兩點,C在線段上運動,原點O關于C的對稱點為Q,求四邊形面積的取值范圍;21.(12分)“綠水青山就是金山銀山”,中國一直踐行創(chuàng)新、協(xié)調(diào)、綠色、開放、共享的發(fā)展理念,著力促進經(jīng)濟實現(xiàn)高質(zhì)量發(fā)展,決心走綠色、低碳、可持續(xù)發(fā)展之路.新能源汽車環(huán)保、節(jié)能,以電代油,減少排放,既符合我國的國情,也代表了世界汽車產(chǎn)業(yè)發(fā)展的方向工業(yè)部表示,到2025年我國新能源汽車銷量占總銷量將達20%以上.2021年,某集團以20億元收購某品牌新能源汽車制造企業(yè),并計劃投資30億元來發(fā)展該品牌.2021年該品牌汽車的銷售量為10萬輛,每輛車的平均銷售利潤為3000元.據(jù)專家預測,以后每年銷售量比上一年增加10萬輛,每輛車的平均銷售利潤比上一年減少10%(1)若把2021年看作第一年,則第n年的銷售利潤為多少億元?(2)到2027年年底,該集團能否通過該品牌汽車實現(xiàn)盈利?(實現(xiàn)盈利即銷售利潤超過總投資,參考數(shù)據(jù):,,)22.(10分)已知點到兩個定點的距離比為(1)求點的軌跡方程;(2)若過點的直線被點的軌跡截得的弦長為,求直線的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】設,根據(jù)兩點間距離公式,先求得P到圓心的最小距離,根據(jù)圓的幾何性質(zhì),即可得答案.【詳解】設,圓化簡為,即圓心為(0,4),半徑為,所以點P到圓心的距離,令,則,令,,為開口向上,對稱軸為的拋物線,所以的最小值為,所以,所以的最小值為.故選:B2、A【解析】延長交延長線于N,則選:A.【點睛】涉及兩焦點問題,往往利用橢圓定義進行轉(zhuǎn)化研究,而角平分線性質(zhì)可轉(zhuǎn)化到焦半徑問題,兩者切入點為橢圓定義.3、D【解析】根據(jù)題意,結(jié)合,,利用不等式的性質(zhì)可判斷,從而判斷,再利用不等式性質(zhì)得出正確答案.【詳解】,,,又,,兩邊同乘以負數(shù),可知故選:D4、C【解析】由雙曲線的定義得出中各線段長(用表示),然后通過余弦定理得出的關系式,變形后可得離心率【詳解】由題意又則有:可得:,,中,中.可得:解得:則有:故選:C5、A【解析】由導函數(shù)的圖像可得函數(shù)的單調(diào)區(qū)間,從而可求得函數(shù)的極值【詳解】由的圖像可知,在和上單調(diào)遞減,在和上單調(diào)遞增,所以為的極大值點,和為的極小值點,不是函數(shù)的極值點,故選:A6、D【解析】對待比較的代數(shù)式進行作差,利用不等式基本性質(zhì),即可判斷大小.【詳解】因為,又,,故,則,即;因為,又,,故,則;綜上所述:.故選:D.7、D【解析】求出函數(shù)的導數(shù),將x=1代入即可求得答案.【詳解】,故,故選:D.8、B【解析】根據(jù)題意得定點為拋物線的焦點,為準線,進而根據(jù)拋物線的定義判斷即可.【詳解】解:由題知,定點為拋物線的焦點,為準線,因為動圓的圓心在拋物線上,且恒過定點,所以根據(jù)拋物線的定義得動圓的圓心到直線的距離等于圓心到定點,即圓心到直線的距離等于動圓的半徑,所以動圓與直線相切.故選:B9、C【解析】解一元二次不等式求集合A,再由集合的交運算求即可.【詳解】由題設,,∴.故選:C.10、A【解析】先利用直線的斜率判定一條漸近線與直線垂直,求出,再利用雙曲線的離心率公式和進行求解.【詳解】因為直線的斜率為,所以雙曲線的一條漸近線與直線垂直,所以,即,則雙曲線的離心率.故選:A.卷II(非選擇題11、C【解析】將方程有解,轉(zhuǎn)化為方程有解求解.【詳解】解:因為方程有解,所以方程有解,因為,當且僅當,即時,等號成立,所以實數(shù)a的取值范圍為,故選:C12、B【解析】判定函數(shù)單調(diào)性,再利用導數(shù)結(jié)合函數(shù)在的單調(diào)性列式計算作答.【詳解】由函數(shù)得:,當且僅當時取“=”,則在R上單調(diào)遞減,于是得函數(shù)在上單調(diào)遞減,即,,即,而在上單調(diào)遞減,當時,,則,所以k的取值范圍是.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分離常數(shù),將問題轉(zhuǎn)化求函數(shù)最值問題.【詳解】任意,恒成立恒成立,故只需,記,,易知,所以.故答案為:14、【解析】分別設線段的中點,線段的中點,再利用點差法可表示出,由平行關系易知三點共線,從而利用斜率相等的關系構(gòu)造方程,代入整理可得到關系,利用雙曲線得到關于的齊次方程,進而求得離心率.【詳解】設,,線段的中點,兩式相減得:…①設,,線段的中點同理可得:…②,易知三點共線,將①②代入得:,所以,即,由題意可得,故.∴,即故答案為:15、24【解析】根據(jù)條件求得每一年投入在最終結(jié)算時的總收入,利用錯位相減法求得總收入.【詳解】由題知,2021年的投入在結(jié)算時的收入為,2022年的投入在結(jié)算時的收入為,,2030年的投入在結(jié)算時的收入為,則結(jié)算時的總投資及收益為:①,則②,由①-②得,,則,故答案為:2416、【解析】由題意,總體中青年教師與老年教師比例為;設樣本中老年教師的人數(shù)為x,由分層抽樣的性質(zhì)可得總體與樣本中青年教師與老年教師的比例相等,即,解得.故答案為.考點:分層抽樣.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)遞推關系式可得,再由等差數(shù)列的定義以及通項公式即可求解.(2)利用錯位相減法即可求解.【小問1詳解】(1),即,所以數(shù)列為等差數(shù)列,公差為1,首項為1,所以,即.【小問2詳解】令,所以,所以18、(1)(2)【解析】(1)直接利用等差數(shù)列的通項公式即可求解;(2)先判斷出數(shù)列單調(diào)性,由時,,時,;然后去掉絕對值,利用等差數(shù)列的前項和公式求解即可.【小問1詳解】是等差數(shù)列,公差;即;【小問2詳解】,則由(1)可知前五項為正,第六項開始為負.19、(1)(2)存在,定點的坐標為,實數(shù)的值為【解析】(1)由題意可得,再結(jié)合,可求出,從而可求得橢圓方程,(2)設在直線上存在定點,當直線斜率存在時,設過點P的動直線l為,設,,將直線方程代入橢圓方程消去,利用根與系數(shù),再計算為常數(shù)可求出,從而可求得,當直線斜率不存在時,可求出兩點的坐標,從而可求得的值【小問1詳解】由題意知結(jié)合,可得,所以橢圓C的標準方程為,【小問2詳解】設在直線上存在定點,使為定值,①當直線斜率存在時,設過點P的動直線l為,設,·由得,則,,所以為常數(shù)則,解之得,即定點為,則②當直線斜率不存在時,即動直線方程為,不妨設,,此時也成立所以,存在定點使為定值,即20、(1)(2)【解析】(1)由得,,再由,可得的軌跡方程;(2)設四邊形的面積為,,設直線的方程為,代入橢圓方程,利用韋達定理代入,整理后再利用函數(shù)單調(diào)性可得答案.【小問1詳解】(1)圓的圓心為,因為,所以,因為,所以,又,且,,所以的軌跡方程為.【小問2詳解】設四邊形面積為,則,可設直線的方程為,代入橢圓方程化簡得,>0恒成立.設,則,=,令,則,在上單調(diào)遞增,,即四邊形面積的取值范圍.21、(1)億元(2)該集團能通過該品牌汽車實現(xiàn)盈利【解析】(1)由題意可求得第n年的銷售量,第n年每輛車的平均銷售利潤,從而可求出第n年的銷售利潤,(2)利用錯位相減法求出到2027年年底銷售利潤總和,再與總投資額比較即可【小問1詳解】設第n年的銷售量為萬輛,則該汽車的年銷售量構(gòu)成首項為10,公差為10的等差數(shù)列,所以,設第n年每輛車的平均銷售利潤為元,則每輛汽車的平均銷售利潤構(gòu)成首項為3000,公比為0.9的等比數(shù)列,所以,記第n年的銷售利潤為,則萬元;即第n年的銷售利潤為億元【小問2詳解】到2027年年底,設銷售利潤總和為S億元,則①,②,①﹣②得億元,而總投資為億元,因為,則到2027年

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論