




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省南昌市三校聯(lián)考2024屆高二數(shù)學第一學期期末教學質量檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某綜合實踐小組設計了一個“雙曲線型花瓶”.他們的設計思路是將某雙曲線的一部分(圖1中A,C之間的曲線)繞其虛軸所在直線l旋轉一周,得到花瓶的側面,花瓶底部是平整的圓面,如圖2.該小組給出了圖1中的相關數(shù)據(jù):,,,,,其中B是雙曲線的一個頂點.小組中甲、乙、丙、丁四位同學分別用不同的方法估算了該花瓶的容積(忽略瓶壁和底部的厚度),結果如下表所示學生甲乙丙丁估算結果()其中估算結果最接近花瓶的容積的同學是()(參考公式:,,)A.甲 B.乙C.丙 D.丁2.設函數(shù)的圖象在點處的切線為,則與坐標軸圍成的三角形面積的最小值為()A. B.C. D.3.已知等比數(shù)列的前n項和為,且滿足公比0<q<1,<0,則下列說法不正確的是()A.一定單調遞減 B.一定單調遞增C.式子-≥0恒成立 D.可能滿足=,且k≠14.直線過點且與雙曲線僅有一個公共點,則這樣的直線有()A.1條 B.2條C.3條 D.4條5.若雙曲線的漸近線方程為,則的值為()A.2 B.3C.4 D.66.已知命題若直線與拋物線有且僅有一個公共點,則直線與拋物線相切,命題若,則方程表示橢圓.下列命題是真命題的是A. B.C. D.7.在四面體中,設,若F為BC的中點,P為EF的中點,則=()A. B.C. D.8.已知等比數(shù)列中,,前三項之和,則公比的值為()A1 B.C.1或 D.或9.設拋物線C:的焦點為,準線為.是拋物線C上異于的一點,過作于,則線段的垂直平分線()A.經(jīng)過點 B.經(jīng)過點C.平行于直線 D.垂直于直線10.設雙曲線與冪函數(shù)的圖象相交于,且過雙曲線的左焦點的直線與函數(shù)的圖象相切于,則雙曲線的離心率為()A. B.C. D.11.若不等式在上有解,則的最小值是()A.0 B.-2C. D.12.已知F1、F2是雙曲線E:(a>0,b>0)的左、右焦點,過F1的直線與雙曲線左、右兩支分別交于點P、Q.若,M為PQ的中點,且,則雙曲線的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)在區(qū)間內存在最大值,則實數(shù)的取值范圍是____________.14.已知命題,則命題的的否定是___________.15.圓上的點到直線的距離的最大值為__________.16.已知雙曲線的左、右焦點分別為,雙曲線左支上點滿足,則的面積為_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足.(1)求數(shù)列的通項公式;(2)設,數(shù)列的前項和為,證明:當時,.18.(12分)蒙古包是蒙古族牧民居住的一種房子,建造和搬遷都很方便,適于游牧生活.其結構如圖所示,上部分是側棱長為3的正六棱錐,下部分是高為1的正六棱柱,分別為正六棱柱上底面與下底面的中心.(1)若長為,把蒙古包的體積表示為的函數(shù);(2)求蒙古包體積的最大值.19.(12分)已知橢圓C:的焦距為,點在C上(1)求C的方程;(2)過點的直線與C交于M,N兩點,點R是直線:上任意一點,設直線RM,RQ,RN的斜率分別為,,,若,,成等差數(shù)列,求的方程.20.(12分)撫州市為了了解學生的體能情況,從全市所有高一學生中按80:1的比例隨機抽取200人進行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,分為組畫出頻率分布直方圖如圖所示,現(xiàn)一,二兩組數(shù)據(jù)丟失,但知道第二組的頻率是第一組的3倍(1)若次數(shù)在以上含次為優(yōu)秀,試估計全市高一學生的優(yōu)秀率是多少?全市優(yōu)秀學生的人數(shù)約為多少?(2)求第一組、第二小組的頻率是多少?并補齊頻率分布直方圖;(3)估計該全市高一學生跳繩次數(shù)的中位數(shù)和平均數(shù)?21.(12分)已知函數(shù).(1)求的單調區(qū)間;(2)求在區(qū)間上的最值.22.(10分)已知數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)記,其中表示不超過最大整數(shù),如,.(i)求、、;(ii)求數(shù)列的前項的和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)幾何體可分割為圓柱和曲邊圓錐,利用圓柱和圓錐的體積公式對幾何體的體積進行估計即可.【詳解】可將幾何體看作一個以為半徑,高為的圓柱,再加上兩個曲邊圓錐,其中底面半徑分別為,,高分別為,,,,所以花瓶的容積,故最接近的是丁同學的估算,故選:D2、C【解析】利用導數(shù)的幾何意義求得切線為,求x、y軸上截距,進而可得與坐標軸圍成的三角形面積,利用導數(shù)研究在上的最值即可得結果.【詳解】由題設,,則,又,所以切線為,當時,當時,又,所以與坐標軸圍成的三角形面積為,則,當時,當時,所以在上遞減,在上遞增,即.故選:C3、D【解析】根據(jù)等比數(shù)列的通項公式,前n項和的意義,可逐項分析求解.【詳解】因為等比數(shù)列的前n項和為,且滿足公比0<q<1,<0,所以當時,由可得,故數(shù)列為增函數(shù),故B正確;由0<q<1,<0知,所以,故一定單調遞減,故A正確;因為當時,,,所以,即-,當時,,綜上,故C正確;若=,且k≠1,則,即,因為,故,故矛盾,所以D不正確.故選:D4、C【解析】根據(jù)直線的斜率存在與不存在,分類討論,結合雙曲線的漸近線的性質,即可求解.【詳解】當直線的斜率不存在時,直線過雙曲線的右頂點,方程為,滿足題意;當直線的斜率存在時,若直線與兩漸近線平行,也能滿足與雙曲線有且僅有一個公共點.綜上可得,滿足條件的直線共有3條.故選:C.【點睛】本題主要考查了直線與雙曲線的位置關系,以及雙曲線的漸近線的性質,其中解答中忽視斜率不存在的情況是解答的一個易錯點,著重考查了分析問題和解答問題的能力,以及分類討論思想的應用,屬于基礎題.5、A【解析】根據(jù)雙曲線方程確定焦點位置,再根據(jù)漸近線方程為求解.【詳解】因為雙曲線所以焦點在x軸上,又因為漸近線方程為,所以,所以.故選:A【點睛】本題主要考查雙曲線的幾何性質,還考查了理解辨析的能力,屬于基礎題.6、B【解析】若直線與拋物線的對稱軸平行,滿足條件,此時直線與拋物線相交,可判斷命題為假;當時,,命題為真,根據(jù)復合命題的真假關系,即可得出結論.【詳解】若直線與拋物線的對稱軸平行,直線與拋物線只有一個交點,直線與拋物不相切,可得命題是假命題,當時,,方程表示橢圓命題是真命題,則是真命題.故選:B.【點睛】本題考查復合命題真假的判斷,屬于基礎題.7、A【解析】作出圖示,根據(jù)空間向量的加法運算法則,即可得答案.【詳解】如圖示:連接OF,因為P為EF中點,,F(xiàn)為BC的中點,則,故選:A8、C【解析】根據(jù)條件列關于首項與公比的方程組,即可解得公比,注意等比數(shù)列求和公式使用條件.【詳解】等比數(shù)列中,,前三項之和,若,,,符合題意;若,則,解得,即公比的值為1或,故選:C【點睛】本題考查等比數(shù)列求和公式以及基本量計算,考查基本分析求解能力,屬基礎題.9、A【解析】依據(jù)題意作出焦點在軸上的開口向右的拋物線,根據(jù)垂直平分線的定義和拋物線的定義可知,線段的垂直平分線經(jīng)過點,即可求解.【詳解】如圖所示:因為線段的垂直平分線上的點到的距離相等,又點在拋物線上,根據(jù)定義可知,,所以線段的垂直平分線經(jīng)過點.故選:A.10、B【解析】設直線方程為,聯(lián)立,利用判別式可得,進而可求,再結合雙曲線的定義可求,即得.【詳解】可設直線方程為,聯(lián)立,得,由題意得,∴,,∴,即,由雙曲線定義得,.故選:B.11、D【解析】將題設條件轉化為在上有解,然后求出的最大值即可得解.【詳解】不等式在上有解,即為在上有解,設,則在上單調遞減,所以,所以,即,故選:D.【點睛】本題主要考查二次不等式能成立問題,可以選擇分離參數(shù)轉化為最值問題,也可以進行分情況討論.12、D【解析】由題干條件得到,設出,利用雙曲線定義表達出其他邊長,得到方程,求出,從而得到,,利用勾股定理求出的關系,求出離心率.【詳解】因為M為PQ的中點,且,所以△為等腰三角形,即,因為,設,則,由雙曲線定義可知:,所以,則,又,所以,解得:,由勾股定理得:,其中,在三角形中,由勾股定理得:,即,解得:故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】首先利用導數(shù)判斷函數(shù)的單調性,再根據(jù)函數(shù)在開區(qū)間內存在最大值,可判斷極大值點就是最大值點,列式求解.【詳解】由題可知:所以函數(shù)在單調遞減,在單調遞增,故函數(shù)的極大值為.所以在開區(qū)間內的最大值一定是又,所以得實數(shù)的取值范圍是故答案為:【點睛】關鍵點點睛:由函數(shù)在開區(qū)間內若存在最大值,即極大值點在區(qū)間內,同時還得滿足極大值點是最大值,還需列不等式,不要忽略這個不等式.14、【解析】利用含有一個量詞的命題的否定的定義求解.【詳解】因為命題是存在量詞命題,所以其否定是全稱量詞命題即,故答案為:15、【解析】先求得圓心到直線的距離,結合圓上的點到直線的距離的最大值為,即可求解.【詳解】由題意,圓的圓心坐標為,半徑為,則圓心到直線的距離為,所以圓上的點到直線的距離的最大值為.故答案為:16、3【解析】由雙曲線方程可得,利用雙曲線定義,以及直角三角形的勾股定理可得,由此求得答案.【詳解】由雙曲線的左、右焦點分別為,雙曲線左支上點滿足,可得:,則,且,故,所以,故,故答案為:3三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)利用前n項和與的關系即求;(2)由題知,然后利用裂項相消法即證.【小問1詳解】由,可得,兩式相減可得,當時,,滿足,所以.【小問2詳解】∵,因為,所以當時,.18、(1),其中.(2).【解析】(1)利用柱體和椎體體積公式求得的函數(shù)表達式.(2)利用導數(shù)求得體積的最大值.【小問1詳解】正六邊形的邊長(0),底面積,于是,其中.【小問2詳解】,,當時,單調遞增,當時,單調遞減,所以當時,.綜上,當時,蒙古包體積最大,且最大體積為.19、(1)(2)【解析】(1)根據(jù)橢圓的焦距為,點在C上,由求解;(2)設,,,的斜率不存在時,則的方程為,與橢圓的方程聯(lián)立求得M,N的坐標,由,,成等差數(shù)列求解;的斜率存在時,設的方程為,與橢圓的方程聯(lián)立,然后由,,成等差數(shù)列,結合韋達定理求解;【小問1詳解】解:由題意得,解得,,所以C的方程為.【小問2詳解】設,,,當?shù)男甭什淮嬖跁r,則的方程為,將代入,得.因為,,成等差數(shù)列,所以,即,顯然當時,方程恒成立.當?shù)男甭蚀嬖跁r,設的方程為,聯(lián)立得,則,.,.因為,,成等差數(shù)列,所以,即恒成立.則,解得.綜上所述,的方程為.20、(1)8640;(2)第一組頻率為,第二組頻率為.頻率分布直方圖見解析;(3)中位數(shù)為,均值為121.9【解析】(1)求出優(yōu)秀的頻率,計算出抽取的人員中優(yōu)秀學生數(shù)后可得全體優(yōu)秀學生數(shù);(2)由頻率和為1求得第一組、第二組頻率,然后可補齊頻率分布直方圖;(3)在頻率分布直方圖中計算出頻率對應的值即為中位數(shù),用各組數(shù)據(jù)中點值乘以頻率后相加得均值【詳解】(1)由頻率分布直方圖,分數(shù)在120分以上的頻率為,因此優(yōu)秀學生有(人);(2)設第一組頻率為,則第二組頻率為,所以,,第一組頻率為,第二組頻率為頻率分布直方圖如下:(3)前3組數(shù)據(jù)的頻率和為,中位數(shù)在第四組,設中位數(shù)為,則,均值為21、(1)在、上是增函數(shù),在上是減函數(shù);(2)在區(qū)間,上的最大值為2,最小值為【解析】(1)求導,根據(jù)導數(shù)和函數(shù)的單調性的關系即可求出單調區(qū)間;(2)根據(jù)(1)可知,函數(shù)在,、上為增函數(shù),在上為減函數(shù),求出端點值和極值,比較即可求出最值【小問1詳解】根據(jù)題意,由于,,得到,,在、上是增函數(shù),當時,在上是減函數(shù);【小問2詳解】由(1)可知,函數(shù)在,,上為增函數(shù),在上為減函數(shù),,(1),,,在區(qū)間,上的最大值為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司股份認購協(xié)議與轉讓約定
- 無線通信技術研發(fā)協(xié)議
- 2025-2030中國火腿腸市場調研及重點企業(yè)投資評估規(guī)劃分析研究報告
- 2025-2030中國港口建設行業(yè)發(fā)展分析及發(fā)展趨勢預測與投資風險研究報告
- 2025-2030中國濃縮雞精行業(yè)發(fā)展分析及發(fā)展前景與趨勢預測研究報告
- 2025-2030中國母嬰電商市場前景盈利預測與運營規(guī)模研究研究報告版
- 牙齦卟啉單胞菌通過抑制巨噬細胞的胞葬功能促進動脈粥樣硬化進展及機制研究
- 婚禮現(xiàn)場布置的流程解析
- 食品營養(yǎng)與安全知識應用試題
- 零售業(yè)多渠道供應鏈管理優(yōu)化方案
- 氨吹脫塔單元設計示例
- 中國移動-安全-L3
- 骨齡評測方法課件
- GB/T 42314-2023電化學儲能電站危險源辨識技術導則
- 人教小學數(shù)學五年級下冊綜合與實踐《怎樣通知最快》示范公開課教學課件
- 海陸熱力性質差異的說課課件
- 科學院大學博士入學復試匯報個人介紹PPT模板
- 四川省稅務局財行處土增稅清算復審指導口徑(2021年6月22日)
- 迎春杯2023年-2023年中高年級初賽復賽試題真題整理
- GB/T 6322-1986光滑極限量規(guī)型式和尺寸
- GB/T 31052.5-2015起重機械檢查與維護規(guī)程第5部分:橋式和門式起重機
評論
0/150
提交評論