版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
遼寧省大連大世界高中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.南宋數(shù)學(xué)家楊輝在《詳解九章算法》中討論過(guò)高階等差數(shù)列與一般等差數(shù)列不同,前后兩項(xiàng)之差并不相等,而是逐項(xiàng)差數(shù)之差或者高次差相等.例如“百層球堆垛”:第一層有1個(gè)球,第二層有3個(gè)球,第三層有6個(gè)球,第四層有10個(gè)球,第五層有15個(gè)球,…,各層球數(shù)之差:,,,,…即2,3,4,5,…是等差數(shù)列.現(xiàn)有一個(gè)高階等差數(shù)列,其前6項(xiàng)分別為1,3,6,12,23,41,則該數(shù)列的第8項(xiàng)為()A.51 B.68C.106 D.1572.離心率為,長(zhǎng)軸長(zhǎng)為6的橢圓的標(biāo)準(zhǔn)方程是A. B.或C. D.或3.若連續(xù)拋擲兩次骰子得到的點(diǎn)數(shù)分別為m,n,則點(diǎn)P(m,n)在直線x+y=4上的概率是()A. B.C. D.4.函數(shù)的圖象大致為()A B.C D.5.正方體的棱長(zhǎng)為2,E,F(xiàn),G分別為,AB,的中點(diǎn),則直線ED與FG所成角的余弦值為()A. B.C. D.6.雙曲線實(shí)軸長(zhǎng)為()A.1 B.C.2 D.7.已知方程表示雙曲線,則實(shí)數(shù)的取值范圍是()A.或 B.C. D.8.拋物線的準(zhǔn)線方程是,則實(shí)數(shù)的值為()A. B.C.8 D.9.實(shí)數(shù)且,,則連接,兩點(diǎn)的直線與圓C:的位置關(guān)系是()A.相離 B.相切C.相交 D.不能確定10.有關(guān)橢圓敘述錯(cuò)誤的是()A.長(zhǎng)軸長(zhǎng)等于4 B.短軸長(zhǎng)等于4C.離心率為 D.的取值范圍是11.橢圓焦距為()A. B.8C.4 D.12.如圖①所示,將一邊長(zhǎng)為1的正方形沿對(duì)角線折起,形成三棱錐,其主視圖與俯視圖如圖②所示,則左視圖的面積為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的準(zhǔn)線方程是___________.14.雙曲線的左頂點(diǎn)為,虛軸的一個(gè)端點(diǎn)為,右焦點(diǎn)到直線的距離為,則雙曲線的離心率為__________.15.若不等式的解集為,則________16.若圓被直線平分,則值為__________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知點(diǎn),(1)若過(guò)點(diǎn)P作的切線只有一條,求實(shí)數(shù)的值及切線方程;(2)過(guò)點(diǎn)P作斜率為1的直線l與相交于M,N兩點(diǎn),當(dāng)面積最大時(shí),求實(shí)數(shù)的值18.(12分)如圖甲是由正方形,等邊和等邊組成的一個(gè)平面圖形,其中,將其沿,,折起得三棱錐,如圖乙.(1)求證:平面平面;(2)過(guò)棱作平面交棱于點(diǎn),且三棱錐和的體積比為,求直線與平面所成角的正弦值.19.(12分)如圖所示,在四棱錐中,平面,底面是等腰梯形,.且(1)證明:平面平面;(2)若,求平面與平面的夾角的余弦值20.(12分)已知點(diǎn)是拋物線C:上的點(diǎn),F(xiàn)為拋物線的焦點(diǎn),且,直線l:與拋物線C相交于不同的兩點(diǎn)A,B.(1)求拋物線C的方程;(2)若,求k的值.21.(12分)如圖,在四棱錐中,底面四邊形為角梯形,,,,O為的中點(diǎn),,.(1)證明:平面;(2)若,求平面與平面所成夾角的余弦值.22.(10分)如圖,在三棱柱中,平面ABC,,,,點(diǎn)D,E分別在棱和棱上,且,,M為棱的中點(diǎn)(1)求證:;(2)求直線AB與平面所成角的正弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】對(duì)高階等差數(shù)列按其定義逐一進(jìn)行構(gòu)造數(shù)列,直到出現(xiàn)一般等差數(shù)列為止,再根據(jù)其遞推關(guān)系進(jìn)行求解.【詳解】現(xiàn)有一個(gè)高階等差數(shù)列,其前6項(xiàng)分別為1,3,6,12,23,41,各項(xiàng)與前一項(xiàng)之差:,,,,,…即2,3,6,11,18,…,,,,,…即1,3,5,7,…是等差數(shù)列,所以,故選:C2、B【解析】試題解析:當(dāng)焦點(diǎn)在x軸上:當(dāng)焦點(diǎn)在y軸上:考點(diǎn):本題考查橢圓的標(biāo)準(zhǔn)方程點(diǎn)評(píng):解決本題的關(guān)鍵是焦點(diǎn)位置不同方程不同3、D【解析】利用分布計(jì)數(shù)原理求出所有的基本事件個(gè)數(shù),在求出點(diǎn)落在直線x+y=4上包含的基本事件個(gè)數(shù),利用古典概型的概率個(gè)數(shù)求出.解:連續(xù)拋擲兩次骰子出現(xiàn)的結(jié)果共有6×6=36,其中每個(gè)結(jié)果出現(xiàn)的機(jī)會(huì)都是等可能的,點(diǎn)P(m,n)在直線x+y=4上包含的結(jié)果有(1,3),(2,2),(3,1)共三個(gè),所以點(diǎn)P(m,n)在直線x+y=4上的概率是3:36=1:12,故選D考點(diǎn):古典概型點(diǎn)評(píng):本題考查先判斷出各個(gè)結(jié)果是等可能事件,再利用古典概型的概率公式求概率,屬于基礎(chǔ)題4、A【解析】利用導(dǎo)數(shù)求得的單調(diào)區(qū)間,結(jié)合函數(shù)值確定正確選項(xiàng).【詳解】由,可得函數(shù)的減區(qū)間為,增區(qū)間為,當(dāng)時(shí),,可得選項(xiàng)為A故選:A5、B【解析】建立空間直角坐標(biāo)系,利用空間向量坐標(biāo)運(yùn)算即可求解.【詳解】如圖所示建立適當(dāng)空間直角坐標(biāo)系,故選:B6、B【解析】由雙曲線的標(biāo)準(zhǔn)方程可求出,即可求雙曲線的實(shí)軸長(zhǎng).【詳解】由可得:,,即,實(shí)軸長(zhǎng),故選:B7、A【解析】根據(jù)雙曲線標(biāo)準(zhǔn)方程的性質(zhì),列出關(guān)于不等式,求解即可得到答案【詳解】由雙曲線的性質(zhì):,解的或,故選:A8、B【解析】化簡(jiǎn)方程為,求得拋物線的準(zhǔn)線方程,列出方程,即可求解.【詳解】由拋物線,可得,所以,所以拋物線的準(zhǔn)線方程為,因?yàn)閽佄锞€的準(zhǔn)線方程為,所以,解得.故選:B.9、B【解析】由題意知,m,n是方程的根,再根據(jù)兩點(diǎn)式求出直線方程,利用圓心到直線的距離與半徑之間的關(guān)系即可求解.【詳解】由題意知,m,n是方程的根,,,過(guò),兩點(diǎn)的直線方程為:,圓心到直線的距離為:,故直線和圓相切,故選:B【點(diǎn)睛】本題考查了直線與圓的位置關(guān)系,考查了計(jì)算求解能力,屬于基礎(chǔ)題.10、A【解析】根據(jù)題意求出,進(jìn)而根據(jù)橢圓的性質(zhì)求得答案.【詳解】橢圓方程化為:,則,則長(zhǎng)軸長(zhǎng)為8,短軸長(zhǎng)為4,離心率,x的取值范圍是.即A錯(cuò)誤,B,C,D正確.故選:A.11、A【解析】由題意橢圓的焦點(diǎn)在軸上,故,求解即可【詳解】由題意,,故橢圓的焦點(diǎn)在軸上故焦距故選:A12、A【解析】由視圖確定該幾何體的特征,即可得解.【詳解】由主視圖可以看出,A點(diǎn)在面上的投影為的中點(diǎn),由俯視圖可以看出C點(diǎn)在面上的投影為的中點(diǎn),所以其左視圖為如圖所示的等腰直角三角形,直角邊長(zhǎng)為,于是左視圖的面積為故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先根據(jù)拋物線方程求出,進(jìn)而求出準(zhǔn)線方程.【詳解】拋物線為,則,解得:,準(zhǔn)線方程為:.故答案為:14、【解析】根據(jù)雙曲線左頂點(diǎn)和虛軸端點(diǎn)的定義,結(jié)合點(diǎn)到直線距離公式、雙曲線的離心率公式進(jìn)行求解即可.【詳解】不妨設(shè)在縱軸的正半軸上,由雙曲線的標(biāo)準(zhǔn)方程可知:,右焦點(diǎn)的坐標(biāo)為,直線的方程為:,因?yàn)橛医裹c(diǎn)到直線的距離為,所以有,即雙曲線的離心率為,故答案為:15、11【解析】根據(jù)題意得到2與3是方程的兩個(gè)根,再根據(jù)兩根之和與兩根之積求出,進(jìn)而求出答案.【詳解】由題意得:2與3是方程的兩個(gè)根,則,,所以.故答案為:1116、;【解析】求出圓的圓心坐標(biāo),代入直線方程求解即可【詳解】解:的圓心圓被直線平分,可知直線經(jīng)過(guò)圓的圓心,可得解得;故答案為:1【點(diǎn)睛】本題考查直線與圓的位置關(guān)系的應(yīng)用,屬于基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);當(dāng)時(shí),切線方程為;當(dāng)時(shí),切線方程為;(2)或【解析】(1)根據(jù)題意可知P在圓上,據(jù)此即可求t和切線方程;(2)的面積,則當(dāng)面積最大時(shí),.即,據(jù)此即可求出圓心O到直線l的距離,即可求出t的數(shù)值.【小問(wèn)1詳解】由題意得點(diǎn)在上,∴,,①當(dāng)時(shí),切點(diǎn),直線OP的斜率,切線斜率,切線方程為,即②當(dāng)時(shí),切點(diǎn),直線OP的斜率,切線斜率,切線方程,即【小問(wèn)2詳解】∵的面積,則當(dāng)面積最大時(shí),.即,則圓心O到直線l距離又直線,即,則,解之得或注:亦可設(shè)圓心O到直線l的距離為d,則的面積,當(dāng)且僅當(dāng),即時(shí)取等號(hào)(下同)18、(1)證明見(jiàn)解析;(2).【解析】(1)取的中點(diǎn)為,連接,,證明,,即證平面,即證得面面垂直;(2)建立如圖空間直角坐標(biāo)系,寫出對(duì)應(yīng)點(diǎn)的坐標(biāo)和向量的坐標(biāo),再計(jì)算平面法向量,利用所求角的正弦為即得結(jié)果.【詳解】(1)證明:如圖,取的中點(diǎn)為,連接,.∵,∴.∵,,∴,同理.又,∴,∴.∵,,平面,∴平面.又平面,∴平面平面;(2)解:如圖建立空間直角坐標(biāo)系,根據(jù)邊長(zhǎng)關(guān)系可知,,,,,∴,.∵三棱錐和的體積比為,∴,∴,∴.設(shè)平面的法向量為,則,令,得.設(shè)直線與平面所成角為,則.∴直線與平面所成角的正弦值為.【點(diǎn)睛】方法點(diǎn)睛:求空間中直線與平面所成角的常見(jiàn)方法為:(1)定義法:直接作平面的垂線,找到線面成角;(2)等體積法:不作垂線,通過(guò)等體積法間接求點(diǎn)到面的距離,距離與斜線長(zhǎng)的比值即線面成角的正弦值;(3)向量法:利用平面法向量與斜線方向向量所成的余弦值的絕對(duì)值,即是線面成角的正弦值.19、(1)證明見(jiàn)解析(2)【解析】(1)由線面垂直的判定定理可得平面,再由面面垂直的判定定理可得平面平面;(2)以為坐標(biāo)原點(diǎn),以,所在直線分別為,軸,以過(guò)點(diǎn)垂直于平面的直線為軸建立空間直角坐標(biāo)系.求出平面的一個(gè)法向量、平面的法向量,由二面角的空間向量求法可得答案.【小問(wèn)1詳解】因?yàn)樗倪呅问堑妊菪?,,所以,所以,即因?yàn)槠矫?,所以,又因?yàn)椋云矫?,因?yàn)槠矫?,所以平面平面【小?wèn)2詳解】以為坐標(biāo)原點(diǎn),以,所在直線分別為,軸,以過(guò)點(diǎn)垂直于平面的直線為軸建立如圖所示的空間直角坐標(biāo)系設(shè),則,所以,,,由(1)可知平面的一個(gè)法向量為設(shè)平面的法向量為,因?yàn)椋?,所以得令,則,,所以,則,所以平面與平面的夾角的余弦值為.20、(1);(2)1或.【解析】(1)根據(jù)拋物線的定義,即可求得p值;(2)由過(guò)拋物線焦點(diǎn)的直線的性質(zhì),結(jié)合拋物線的定義,即可求出弦長(zhǎng)AB【詳解】(1)拋物線C:的準(zhǔn)線為,由得:,得.所以拋物線的方程為.(2)設(shè),,由,,∴,∵直線l經(jīng)過(guò)拋物線C的焦點(diǎn)F,∴解得:,所以k的值為1或.【點(diǎn)睛】考核拋物線的定義及過(guò)焦點(diǎn)弦的求法21、(1)證明見(jiàn)解析;(2).【解析】(1)連接,可通過(guò)證明,得平面;(2)以O(shè)為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,求出平面的法向量和平面的法向量,通過(guò)向量的夾角公式可得答案.【小問(wèn)1詳解】如圖,連接,在中,由可得.因?yàn)?,,所以,,因?yàn)?,,,所以,所?又因?yàn)?,平面,,所以平?【小問(wèn)2詳解】由(1)可知,,,兩兩垂直,以O(shè)為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,則,,,,.由,有,則,設(shè)平面的法向量為,由,,有,取,則,,可得平面的一個(gè)法向量為.設(shè)平面的法向量為,由,,有,取,則,,可得平面的一個(gè)法向量為.由,,,可得平面與平面所成夾角的余弦值為.22、(1)證明見(jiàn)解析;(2)【解析】(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 小額汽車貸款合同范例
- 2024年企業(yè)租車合同協(xié)議樣本
- 標(biāo)準(zhǔn)版市政道路工程合同
- 上門服務(wù)協(xié)議合同范本2024年
- 小型貨車銷售合同
- 網(wǎng)絡(luò)廣告合作協(xié)議
- 2024年度網(wǎng)絡(luò)安全防護(hù)服務(wù)合同
- 辦公租賃合同模板
- (2024版)人工智能醫(yī)療診斷系統(tǒng)開發(fā)合同
- 2024年度醫(yī)療器械獨(dú)家代理合同
- 跨境數(shù)據(jù)流動(dòng)的全球治理進(jìn)展、趨勢(shì)與中國(guó)路徑
- 【多旋翼無(wú)人機(jī)的組裝與調(diào)試5600字(論文)】
- 2023年遼陽(yáng)市宏偉區(qū)事業(yè)單位考試真題
- 環(huán)境工程專業(yè)英語(yǔ) 課件
- 繼電保護(hù)動(dòng)作分析報(bào)告課件
- 五年級(jí)數(shù)學(xué)上冊(cè)8解方程課件
- 教學(xué)工作中存在問(wèn)題及整改措施
- 內(nèi)部項(xiàng)目跟投協(xié)議書(正)
- 鋼管靜壓樁質(zhì)量監(jiān)理細(xì)則
- 5000頭奶牛養(yǎng)殖場(chǎng)新建項(xiàng)目環(huán)境評(píng)估報(bào)告書
- 16飛機(jī)顛簸教學(xué)課件
評(píng)論
0/150
提交評(píng)論