版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年安徽省六安市高一下冊期中數(shù)學質量檢測模擬試題一、單選題1.的值為(
)A. B. C. D.【正確答案】A【分析】利用誘導公式求三角函數(shù)值即可.【詳解】因為,,所以.故選:A.2.已知向量,,若,則(
)A. B. C. D.【正確答案】D【分析】根據(jù)向量平行的坐標表示,結合向量坐標運算求解即可.【詳解】解:因為向量,,所以,解得,所以,所以故選:D3.已知單位向量、滿足,則(
)A. B. C. D.【正確答案】D【分析】由題知,進而結合運算律求解即可.【詳解】解:因為單位向量、滿足,所以,所以.故選:D4.已知角終邊經(jīng)過點,則的值為(
)A. B. C. D.【正確答案】B【分析】確定,化簡得到原式為,計算得到答案.【詳解】角終邊經(jīng)過點,故,,故選:B5.如圖,在中,,為CD的中點,設,,則(
)A. B. C. D.【正確答案】D【分析】根據(jù)向量的線性運算結合條件即可得答案.【詳解】由已知得.故選:D.6.若平面向量與的夾角為60°,,,則等于(
)A. B. C.4 D.【正確答案】D【分析】確定,利用數(shù)量積的運算律計算,得到答案.【詳解】,則,,故.故選:D.7.函數(shù)(﹥,且)在一個周期內(nèi)的圖象如圖所示,下列結論正確的是(
)A. B.在上單調(diào)遞減C. D.把的圖象向左平移個單位可以得到的圖象【正確答案】C【分析】由正弦函數(shù)圖象性質求得,再依次討論各選項即可.【詳解】解:由題知,所以,解得,所以,再將點代入得,即所以,因為,所以,所以,故A選項錯誤;當時,,由于正弦函數(shù)在區(qū)間上不單調(diào),故在上不單調(diào),B選項錯誤;,C選項正確;把的圖象向左平移個單位可以得到的圖象,故D選項錯誤.故選:C8.已知與均為單位向量,若對任意的恒成立,則的取值范圍為(
)A. B. C. D.【正確答案】A【分析】平方整理得到,由求解即可.【詳解】,即,即恒成立,故,解得,又,所以.故選:A二、多選題9.已知平面向量、、,下列四個命題不正確的是(
)A.若∥且∥,則∥ B.C.若,則 D.【正確答案】ACD【分析】舉反例得到AC錯誤,,D錯誤,B正確,得到答案.【詳解】對選項A:當,任意和均滿足條件,錯誤;對選項B:,正確;對選項C:當,任意和均滿足條件,錯誤;對選項D:,錯誤;故選:ACD.10.函數(shù),則以下結論中正確的是(
)A.在上單調(diào)遞減 B.直線為圖象的一條對稱軸C.的最小正周期為 D.在上的值域是【正確答案】AC【分析】化簡得到,再根據(jù)三角函數(shù)的單調(diào)性,對稱軸和周期值域依次判斷每個選項得到答案.【詳解】,對選項A:在上單調(diào)遞減,正確;對選項B:不是圖像的對稱軸,錯誤;對選項C:的最小正周期為,正確;對選項D:,則,,錯誤.故選:AC11.下列命題中正確的是(
)A.若向量,,則、可作為平面向量的一組基底B.若四邊形為平行四邊形,且,則頂點的坐標為C.若是等邊三角形,則D.已知向量滿足,,且,則在上的投影向量的坐標為【正確答案】ABD【分析】,不共線,A正確,得到,B正確,,C錯誤,根據(jù)投影向量公式計算得到D正確,得到答案.【詳解】對選項A:,,,不共線,可以作為平面向量的一組基底,正確;對選項B:四邊形為平行四邊形,則,設,則,解得,,即,正確;對選項C:若是等邊三角形,則,錯誤;對選項D:在上的投影向量為,正確;故選:ABD12.“奔馳定理”是平面向量中一個非常優(yōu)美的結論,因為這個定理對應的圖形與“奔馳”轎車(Mercedesbenz)的logo很相似,故形象地稱其為“奔馳定理”.奔馳定理:已知是內(nèi)一點,,,的面積分別為,則,是內(nèi)的一點,∠,∠,∠分別是的三個內(nèi)角,以下命題正確的有(
)A.若,則B.若,,且,則C.若,則為的垂心D.若為的內(nèi)心,且,則【正確答案】BCD【分析】根據(jù)題意得到,A錯誤,計算,根據(jù)比例關系得到B正確,確定得到C正確,根據(jù)面積公式得到,得到D正確,得到答案.【詳解】對選項A:,則,錯誤;對選項B:,,故,,正確;對選項C:,即,故,同理可得,,故為的垂心,正確;對選項D:,故,設內(nèi)接圓半徑為,,,,即,即,,正確.故選:BCD三、填空題13.已知,則___________.【正確答案】/【分析】根據(jù),結合誘導公式求解即可.【詳解】解:因為,所以故14.已知向量,,.若,則實數(shù)___________.【正確答案】/【分析】根據(jù)向量的坐標運算與垂直關系的坐標表示求解即可.【詳解】解:因為,,所以,因為,所以,解得,故15.已知O是平面上一定點,A、B、C是平面上不共線的三個點,動點P滿足,,則P的軌跡一定經(jīng)過的___________.(從“重心”,“外心”,“內(nèi)心”,“垂心”中選擇一個填寫)【正確答案】外心【分析】為中點,連接,計算,,得到,得到答案.【詳解】如圖所示:為中點,連接,,,故,即,故的軌跡一定經(jīng)過的外心.故外心16.已知向量與的模均為,且,點在以為圓心的劣弧上運動,若,,則的取值范圍是___________.【正確答案】【分析】由題建立直角坐標,設,,進而根據(jù)向量關系得,再結合三角恒等變換求解即可.【詳解】解:根據(jù)題意,作出如圖的圖形,設,則點在以為圓心的劣弧上運動,其軌跡方程為,所以,設,因為,所以,所以,解得所以,,因為,,所以,即所以,即所以,的取值范圍是故
四、解答題17.已知平面向量,.(1)若與垂直,求實數(shù)的值;(2)若為與的夾角,求的值.【正確答案】(1)(2)【分析】(1)確定,,計算得到答案.(2)確定,,根據(jù)向量的夾角公式計算,得到答案.【詳解】(1),,則,,,解得.(2),,則,,故,故.18.已知,為銳角,,.(1)求的值;(2)求的值.【正確答案】(1)(2)【分析】(1)確定,再利用二倍角公式計算得到答案.(2)確定,,再利用和差公式計算得到答案.【詳解】(1)為銳角,,則,.(2),則,為銳角,則..19.已知,,設函數(shù).(1)求的單調(diào)遞增區(qū)間;(2)若,求值域.【正確答案】(1)(2)【分析】(1)化簡得到,解不等式得到答案.(2),則,故,得到值域.【詳解】(1).取,解得.故函數(shù)的單調(diào)遞增區(qū)間為.(2),則,故,.20.已知向量,.(1)設,求的最小值;(2)若向量與向量的夾角為鈍角,求實數(shù)t的取值范圍.【正確答案】(1)(2)【分析】由平面向量的坐標計算即可.【詳解】(1)由題意得:,所以所以當時,取得最小值為.(2)由于,,向量與向量的夾角為鈍角,所以,且向量與向量不能共線,即即所以,故實數(shù)t的取值范圍為:21.已知點是外接圓的圓心,點是邊的中點.(1)若,,求的值;(2)若,,求的值.【正確答案】(1)(2)【分析】(1)確定,,平方再相減得到答案.(2)計算,,確定,代入計算得到答案.【詳解】(1)點是邊的中點,則,故;,故,故,即.(2)點,分別為,的中點,連接,,則,,,同理得到,.22.已知為坐標原點,對于函數(shù),稱向量為函數(shù)的伴隨向量,同時稱函數(shù)為向量的伴隨函數(shù).(1)設函數(shù),試求的伴隨向量的坐標;(2)記向量的伴隨函數(shù)為,當且時,求的值;(3)設向量,的伴隨函數(shù)為,的伴隨函數(shù)為,記函數(shù),求在上的最大值.【正確答案】(1)(2)(3)【分析】(1)化簡的解析式,從而求得伴隨向量;(2)先求得,由求得,進而求得,從而求得;(3)先求得,然后根據(jù)三角函數(shù)的值域與二次函數(shù)最值分類討論求解即可.【詳解】(1)解:,所以.(2)解:依題意,由得,因為,所以,所以.(3)解:由題知,,所以因為,,所以,,令,所以,問題轉化為函數(shù)的最值問題.因為函數(shù)的對稱軸為,所以,當,即時,的最大值在處取得,為;當,即時,的最大值在處取得,為;當,即時,的最大值在處取得,為;綜上,在上的最大值為.方法點睛:求解新定義函數(shù)有關的問題,關鍵點在于理解新的定義,解題過程中,要將“新”問題,轉化為所學的知識來進行求解,體現(xiàn)了化歸與轉化的數(shù)學思想方法.2023-2024學年安徽省六安市高一下冊期中數(shù)學質量檢測模擬試題一、單選題1.的值為(
)A. B. C. D.【正確答案】A【分析】根據(jù)誘導公式化簡,利用三角函數(shù)特殊值即可得答案.【詳解】.故選:A.2.已知向量,,若,則(
)A. B. C. D.【正確答案】D【分析】根據(jù)向量平行的坐標表示,結合向量坐標運算求解即可.【詳解】解:因為向量,,所以,解得,所以,所以故選:D3.已知單位向量、滿足,則(
)A. B. C. D.【正確答案】D【分析】由題知,進而結合運算律求解即可.【詳解】解:因為單位向量、滿足,所以,所以.故選:D4.將函數(shù)的圖象向左平移個單位長度得到函數(shù)的圖象,則函數(shù)的解析式為(
)A. B.C. D.【正確答案】C【分析】直接根據(jù)平移變換的原則即可得解.【詳解】函數(shù)的圖象向左平移個單位長度得到.故選:C.5.如圖所示,在平行四邊形中,等于A. B.C. D.【正確答案】C根據(jù)平行四邊形的性質,利用,化簡原式即可得結果.【詳解】因為在平行四邊形中,,所以,所以,故選C.本題主要考查相反向量的性質,意在考查對基礎知識的掌握與應用,屬于基礎題.6.已知,則的值為(
)A. B. C. D.【正確答案】B【分析】由誘導公式化簡,再根據(jù)商數(shù)公式弦化切即可得答案.【詳解】.故選:B.7.若平面向量與的夾角為60°,,,則等于(
)A. B. C.4 D.【正確答案】D【分析】確定,利用數(shù)量積的運算律計算,得到答案.【詳解】,則,,故.故選:D.8.已知與均為單位向量,若對任意的恒成立,則的取值范圍為(
)A. B. C. D.【正確答案】A【分析】平方整理得到,由求解即可.【詳解】,即,即恒成立,故,解得,又,所以.故選:A二、多選題9.已知平面向量、、,下列四個命題不正確的是(
)A.若,則 B.單位向量都相等C.方向相反的兩個非零向量一定共線 D.若,滿足,且與同向,則【正確答案】BD【分析】根據(jù)向量的定義和性質,逐項判斷正誤即可.【詳解】對于A,若,則,故A正確;對于B,單位向量的模為,但是方向不一定相同,故B錯誤;對于C,方向相同或相反的兩個非零向量為共線向量,故C正確;對于D,向量之間不能比較大小,只能比較向量的模,故D錯誤;故選:BD10.函數(shù),則以下結論中正確的是(
)A.在上單調(diào)遞減 B.直線為圖象的一條對稱軸C.的最小正周期為 D.在上的值域是【正確答案】AC【分析】化簡得到,再根據(jù)三角函數(shù)的單調(diào)性,對稱軸和周期值域依次判斷每個選項得到答案.【詳解】,對選項A:在上單調(diào)遞減,正確;對選項B:不是圖像的對稱軸,錯誤;對選項C:的最小正周期為,正確;對選項D:,則,,錯誤.故選:AC11.下列命題中正確的是(
)A.若向量,,則、可作為平面向量的一組基底B.若四邊形為平行四邊形,且,則頂點的坐標為C.若是等邊三角形,則D.已知向量滿足,,且,則在上的投影向量的坐標為【正確答案】ABD【分析】,不共線,A正確,得到,B正確,,C錯誤,根據(jù)投影向量公式計算得到D正確,得到答案.【詳解】對選項A:,,,不共線,可以作為平面向量的一組基底,正確;對選項B:四邊形為平行四邊形,則,設,則,解得,,即,正確;對選項C:若是等邊三角形,則,錯誤;對選項D:在上的投影向量為,正確;故選:ABD12.點是所在平面內(nèi)的一點,下列說法正確的有(
)A.若,則為的重心B.若,則點為的垂心C.O是平面上一定點,A、B、C是平面上不共線的三個點,動點P滿足,,則P的軌跡一定通過的內(nèi)心D.若是△內(nèi)的一點,且,,分別表示,的面積,則【正確答案】ACD【分析】取的中點,連接,得出,然后可判斷A的正誤;根據(jù)向量的數(shù)量積運算可得出點是中垂線的交點,然后可判斷B的正誤;先根據(jù)、分別表示向量、方向上的單位向量,確定,判斷與的角平分線的關系,然后可判斷C的正誤;取的中點,可根據(jù)條件得出,且,然后即可判斷D的正誤.【詳解】對于A:如圖,取的中點,連接,則,,,三點共線,是的中線,且,為的重心,故A正確;對于B:,,即又,,即,則,是的外心,故B錯誤;對于C:、分別表示向量、方向上的單位向量,的方向與的角平分線重合,又可得到向量的方向與的角平分線重合,一定通過的內(nèi)心,故C正確;對于D:如圖:,分別是,的中點,,,,,,則,故D正確.故選:ACD.三、填空題13.已知,則___________.【正確答案】/【分析】由,再結合誘導公式,即可求解.【詳解】因為,故14.已知向量,,.若,則實數(shù)___________.【正確答案】/【分析】根據(jù)向量的坐標運算與垂直關系的坐標表示求解即可.【詳解】解:因為,,所以,因為,所以,解得,故15.已知向量,滿足,且,則,夾角為__________.【正確答案】【分析】根據(jù)數(shù)量積的性質求夾角余弦值,即可求得,夾角大小.【詳解】,夾角余弦值,又,所以,即,夾角為.故答案為.16.在中,為邊上靠近點的一個三等分點,為線段上一動點,且滿足,則的最小值為______.【正確答案】【分析】先求得的等量關系式,然后利用基本不等式求得正確答案.【詳解】依題意,,,由于三點共線,所以.所以,當且僅當時等號成立.故四、解答題17.已知,.(1)若與垂直,求實數(shù)的值;(2)若為與的夾角,求的值.【正確答案】(1)(2)【分析】(1)根據(jù)平面向量的坐標運算求模長與數(shù)量積,由向量垂直列方程即可得實數(shù)的值;(2)根據(jù)平面向量的夾角余弦值的坐標運算即可.【詳解】(1)因為,,所以,又與垂直,所以,解得;(2)因為所以.18.已知,為銳角,,.(1)求的值;(2)求的值.【正確答案】(1)(2)【分析】(1)確定,再利用二倍角公式計算得到答案.(2)確定,,再利用和差公式計算得到答案.【詳解】(1)為銳角,,則,.(2),則,為銳角,則..19.已知,是兩個不共線的向量.(1)若,,,求證:A,B,D三點共線;(2)若和共線,求實數(shù)的值.【正確答案】(1)證明見解析;(2)【分析】(1)求出,找到使成立的即可證明;(2)通過平行,必存在實數(shù)使,列方程組求出實數(shù)的值.【詳解】(1),又,,,又,A,B,D三點共線;(2)向量和共線,存在實數(shù)使,又,是不共線,,解得.20.已知向量,.(1)求的值;(2)若向量與向量的夾角為鈍角,求實數(shù)t的取值范圍.【正確答案】(1)(2)【分析】(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版商務車租賃合同(含保險責任條款)
- 二零二五版合作開發(fā)房地產(chǎn)合同綠色建筑認證3篇
- 2025年綠色建筑土石方工程承包合同樣本2篇
- 2025年度菜園大棚蔬菜種植與農(nóng)業(yè)科技研發(fā)合同3篇
- 2025版路燈設施安全檢查與應急搶修服務合同4篇
- 二零二四年醫(yī)療耗材配件銷售代理合同樣本3篇
- 2025年度工業(yè)用地場地租賃及使用權轉讓合同3篇
- 2025年度車輛租賃與道路救援服務合同3篇
- 2025年新能源汽車專用車位租賃與充電服務合同2篇
- 2025年度房地產(chǎn)項目融資合同8篇
- 家庭年度盤點模板
- 河南省鄭州市2023-2024學年高二上學期期末考試 數(shù)學 含答案
- 2024年資格考試-WSET二級認證考試近5年真題集錦(頻考類試題)帶答案
- 試卷中國電子學會青少年軟件編程等級考試標準python三級練習
- 公益慈善機構數(shù)字化轉型行業(yè)三年發(fā)展洞察報告
- 飼料廠現(xiàn)場管理類隱患排查治理清單
- 【名著閱讀】《紅巖》30題(附答案解析)
- Starter Unit 2 同步練習人教版2024七年級英語上冊
- 分數(shù)的加法、減法、乘法和除法運算規(guī)律
- 2024年江蘇鑫財國有資產(chǎn)運營有限公司招聘筆試沖刺題(帶答案解析)
- 2024年遼寧石化職業(yè)技術學院單招職業(yè)適應性測試題庫含答案
評論
0/150
提交評論