云南省文山州廣南二中2023年數(shù)學高二上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
云南省文山州廣南二中2023年數(shù)學高二上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
云南省文山州廣南二中2023年數(shù)學高二上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
云南省文山州廣南二中2023年數(shù)學高二上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
云南省文山州廣南二中2023年數(shù)學高二上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

云南省文山州廣南二中2023年數(shù)學高二上期末學業(yè)質(zhì)量監(jiān)測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.“”是“直線和直線垂直”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分又非必要條件2.“”是“方程表示橢圓”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件3.已知直線l和兩個不同的平面,,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.已知函數(shù)的導函數(shù)為,若的圖象如圖所示,則函數(shù)的圖象可能是()A B.C. D.5.下列說法或運算正確的是()A.B.用反證法證明“一個三角形至少有兩個銳角”時需設“一個三角形沒有銳角”C.“,”的否定形式為“,”D.直線不可能與圓相切6.下列說法正確的個數(shù)有()(?。┟}“若,則”的否命題為:“若,則”;(ⅱ)“,”的否定為“,使得”;(ⅲ)命題“若,則有實根”為真命題;(ⅳ)命題“若,則”的否命題為真命題;A.1個 B.2個C.3個 D.4個7.已知圓:,點是直線:上的動點,過點引圓的兩條切線、,其中、為切點,則直線經(jīng)過定點()A. B.C. D.8.已知橢圓的一個焦點坐標為,則的值為()A.1 B.3C.9 D.819.已知雙曲線漸近線方程為,則該雙曲線的離心率等于()A. B.C.2 D.410.在等差數(shù)列中,,且構成等比數(shù)列,則公差等于()A.0 B.3C. D.0或311.已知數(shù)列為等比數(shù)列,則“,”是“為遞減數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.如圖,平面四邊形中,,,,為等邊三角形,現(xiàn)將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點F在直線上,過點F的直線l與拋物線C相交于A,B兩點,O為坐標原點,△的面積是△面積的4倍,則直線l的方程為____________14.已知數(shù)列是等差數(shù)列,,公差,為其前n項和,滿足,則當取得最大值時,______15.已知函數(shù),則的導函數(shù)______.16.已知雙曲線C:的兩焦點分別為,,P為雙曲線C上一點,若,則=___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左、右焦點分別是,點P是橢圓C上任一點,若面積的最大值為,且離心率(1)求C的方程;(2)A,B為C的左、右頂點,若過點且斜率不為0的直線交C于M,N兩點,證明:直線與的交點在一條定直線上18.(12分)已知函數(shù).(1)求函數(shù)在處的切線方程;(2)求函數(shù)在區(qū)間上的最大值與最小值.19.(12分)設曲線在點(1,0)處的切線方程為.(1)求a,b的值;(2)求證:;(3)當,求a的取值范圍.20.(12分)如圖,在四棱錐中,底面ABCD為直角梯形,,,底面ABCD,E為BP的中點,,(1)證明:平面PAD;(2)求平面EAC與平面PAC夾角的余弦值21.(12分)以直角坐標系的原點為極點,軸的正半軸為極軸建立極坐標系,已知直線的極坐標方程為,曲線的參數(shù)方程是(為參數(shù)(1)求直線和曲線的普通方程;(2)直線與軸交于點,與曲線交于,兩點,求22.(10分)已知函數(shù)f(x)=ax3+bx2﹣3x在x=﹣1和x=3處取得極值.(1)求a,b的值(2)求f(x)在[﹣4,4]內(nèi)的最值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)直線垂直求出值即可得答案.【詳解】解:若直線和直線垂直,則,解得或,則“”是“直線和直線垂直”的充分非必要條件.故選:A.2、B【解析】根據(jù)方程表示橢圓,且2,再判斷必要不充分條件即可.【詳解】解:方程表示橢圓滿足,解得,且2所以“”是“方程表示橢圓”的必要不充分條件.故選:B3、D【解析】根據(jù)直線、平面的位置關系,應用定義法判斷兩個條件之間的充分、必要性.【詳解】當,時,直線l可與平行、相交,故不一定成立,即充分性不成立;當,時,直線l可在平面內(nèi),故不一定成立,即必要性不成立.故選:D.4、D【解析】根據(jù)導函數(shù)大于,原函數(shù)單調(diào)遞增;導函數(shù)小于,原函數(shù)單調(diào)遞減;即可得出正確答案.【詳解】由導函數(shù)得圖象可得:時,,所以在單調(diào)遞減,排除選項A、B,當時,先正后負,所以在先增后減,因選項C是先減后增再減,故排除選項C,故選:D.5、D【解析】對于A:可以解決;對于B:“一個三角形至少由兩個銳角”的反面是“只有一個銳角或沒有銳角”;對于C:全稱否定必須是全部否定;對于D:需要觀察出所給直線是過定點的.【詳解】A:,故錯誤;B:“一個三角形至少由兩個銳角”的反面是“只有一個銳角或沒有銳角”,所以用反證法時應假設只有一個銳角和沒有銳角兩種情況,故錯誤;C:的否定形式是,故錯誤;D:直線是過定點(-1,0),而圓,圓心為(2,0),半徑為4,定點(-1,0)到圓心的距離為2-(-1)=3<4,故定點在圓內(nèi),故正確;故選:D.6、B【解析】根據(jù)四種命題的結構特征可判斷(ⅰ)(ⅳ)的正誤,根據(jù)全稱命題的否定形式可判斷(ⅱ)的正誤,根據(jù)判別式的正誤可判斷(ⅲ)的正誤.【詳解】命題“若,則”的否命題”為“若,則”,故(?。╁e誤.“,”的否定為“,使得”,故(ⅱ)正確,當時,,故有實根,故(ⅲ)正確,“若,則”的否命題為“若,則”,取,則,故命題若,則為假命題,故(ⅳ)錯誤.故選:B7、D【解析】根據(jù)圓的切線性質(zhì),結合圓的標準方程、圓與圓的位置關系進行求解即可.【詳解】因為、是圓的兩條切線,所以,因此點、在以為直徑的圓上,因為點是直線:上的動點,所以設,點,因此的中點的橫坐標為:,縱坐標為:,,因此以為直徑的圓的標準方程為:,而圓:,得:,即為直線的方程,由,所以直線經(jīng)過定點,故選:D【點睛】關鍵點睛:由圓的切線性質(zhì)得到點、在以為直徑的圓上,運用圓與圓的位置關系進行求解是解題的關鍵.8、A【解析】根據(jù)條件,利用橢圓標準方程中長半軸長a,短半軸長b,半焦距c關系列式計算即得.【詳解】由橢圓的一個焦點坐標為,則半焦距c=2,于是得,解得,所以值為1.故選:A9、A【解析】由雙曲線的漸近線方程,可得,再由的關系和離心率公式,計算即可得到所求值【詳解】解:雙曲線的漸近線方程為,由題意可得即,可得由可得,故選:A.10、D【解析】根據(jù),且構成等比數(shù)列,利用“”求解.【詳解】設等差數(shù)列的公差為d,因為,且構成等比數(shù)列,所以,解得,故選:D11、A【解析】本題可依次判斷“,”是否是“為遞減數(shù)列”的充分條件以及必要條件,即可得出結果.【詳解】若等比數(shù)列滿足、,則數(shù)列為遞減數(shù)列,故“,”是“為遞減數(shù)列”的充分條件,因為若等比數(shù)列滿足、,則數(shù)列也是遞減數(shù)列,所以“,”不是“為遞減數(shù)列”的必要條件,綜上所述,“,”是“為遞減數(shù)列”的充分不必要條件,故選:A.【點睛】本題考查充分條件以及必要條件的判定,考查等比數(shù)列以及遞減數(shù)列的相關性質(zhì),體現(xiàn)了基礎性和綜合性,考查推理能力,是簡單題.12、A【解析】將三棱錐補形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應在棱柱上下底面三角形的外心連線上,在中,計算半徑即可.【詳解】由,,可知平面將三棱錐補形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應在棱柱上下底面三角形的外心連線上,記的外心為,由為等邊三角形,可得又,故在中,此即為外接球半徑,從而外接球表面積為故選:A【點睛】本題考查了三棱錐外接球的表面積,考查了學生空間想象,邏輯推理,綜合分析,數(shù)學運算的能力,屬中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設A,B分別為,由焦點在已知直線上求F坐標及拋物線方程,再根據(jù)題設三角形的面積關系可得,并設直線l為,聯(lián)立拋物線應用韋達定理求參數(shù)m,即可知直線l的方程.【詳解】設點A,B的坐標分別為,直線,令可得,故焦點F的坐標為,所以,由,,而△的面積是△面積的4倍,所以,即,設直線l為,聯(lián)立方程,消去x后整理為,所以,代入,有,可得,則直線l的方程為故答案為:.【點睛】關鍵點點睛:根據(jù)拋物線焦點位置及其所在直線求拋物線方程,由面積關系得到交點縱坐標的數(shù)量關系,注意交點在x軸兩側,再設直線聯(lián)立拋物線求參數(shù)即可.14、9或10【解析】等差數(shù)列通項公式的使用.【詳解】數(shù)列是等差數(shù)列,且,得,得,則有,又因為,公差,所以或10時,取得最大值故答案為:9或1015、【解析】利用基本初等函數(shù)的求導公式及積的求導法則計算作答.【詳解】函數(shù)定義域為,則,所以.故答案為:16、18或2##2或18【解析】先由雙曲線的方程求出,再利用雙曲線的定義列方程求解即可【詳解】由,得,則,因為雙曲線C:的兩焦點分別為,,P為雙曲線C上一點,所以,即,所以或,因為,所以或都符合題意,故答案為:18或2三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)用待定系數(shù)法求出橢圓的方程;(2)設直線MN的方程為x=my+1,設,用“設而不求法”表示出.由直線AM的方程為,直線BN的方程為,聯(lián)立,解得:,即可證明直線AM與BN的交點在直線上.【小問1詳解】由題意可得:,解得:,所以C的方程為.【小問2詳解】由(1)得A(-2,0),B(2,0),F2(1,0),設直線MN的方程為x=my+1.設,由,消去y得:,所以.所以.因為直線AM的方程為,直線BN的方程為,二者聯(lián)立,有,所以,解得:,直線AM與BN的交點在直線上.【點睛】(1)待定系數(shù)法可以求二次曲線的標準方程;(2)"設而不求"是一種在解析幾何中常見的解題方法,可以解決直線與二次曲線相交的問題.18、(1)(2),【解析】(1)根據(jù)導數(shù)的幾何意義即可求解;(2)根據(jù)導數(shù)的正負判斷f(x)的單調(diào)性,根據(jù)其單調(diào)性即可求最大值和最小值.【小問1詳解】,切點為(1,-2),∵,∴切線斜率,切線方程為;【小問2詳解】令,解得,1200極大值極小值2∵,,∴當時,,.19、(1)(2)證明見解析(3)【解析】(1)求導,根據(jù)導數(shù)的幾何意義,令x=1處的切線的斜率等1,結合,即可求得a和b的值;(2)利用(1)的結論,構造函數(shù),求求導數(shù),判斷單調(diào)性,求出最小值即可證明;(3)根據(jù)條件構造函數(shù),求出其導數(shù),分類討論導數(shù)的值的情況,根據(jù)單調(diào)性,判斷函數(shù)的最小值情況,即可求得答案.【小問1詳解】由題意知:,因為曲線在點(1,0)處的切線方程為,故,即;【小問2詳解】證明:由(1)知:,令,則,當時,,單調(diào)遞減,當時,,單調(diào)遞增,所以當時,取得極小值,也即最小值,最小值為,故,即成立;【小問3詳解】當,即,(),設,(),則,當時,由得,此時,此時在時單調(diào)遞增,,適合題意;當時,,此時在時單調(diào)遞增,,適合題意;當時,,此時,此時在時單調(diào)遞增,,適合題意;當時,,此時在內(nèi),,在內(nèi),,故,顯然時,,不滿足當恒成立,綜上述:.20、(1)證明見解析(2)【解析】(1)通過作輔助線,構造平行四邊形,在平面PAD找到線并證明,根據(jù)線面平行的判定定理即可證明;(2)建立空間直角坐標系,求出相應點的坐標,進而求得相關的向量坐標,求出平面EAC與平面PAC的法向量,根據(jù)向量的夾角公式求得答案.【小問1詳解】證明:取PA的中點F,由E為PB的中點,則,,而,,所以且,則四邊形CDFE為平行四邊形,所以,又平面PAD,平面PAD,所以平面PAD【小問2詳解】∵平面ABCD,,∴AP,AB,AD兩兩垂直,以A為原點,,,向量方向分別為x軸,y軸,z軸建立如圖所示空間直角坐標系,各點坐標如下:,,,,,設平面APC的法向量為,由,,有,取,則,,即,設平面EAC的法向量為,由,,有,取,則,,即,所以,由原圖可知平面EAC與平面PAC夾角為銳角,所以平面EAC與平面PAC夾角的余弦值為21、(1),(2)4【解析】(1)根據(jù),即可將直線的極坐標方程轉(zhuǎn)化為普通方程;消參數(shù),即可求出曲線的普通方程;(2)由題意易知,求出直線的參數(shù)方程,將其代入曲線的普通方程,利用一元二次方程根和系數(shù)關系式的應用,即可求出結果【小問1詳解】解:直線極坐標方程為,即,又,可得的普通方程為,曲線的參數(shù)方程是(為參數(shù),消參數(shù),所以曲線的普通方程為【小問2詳解】解:在中令得,,傾斜角,的參數(shù)方程可設為,即(為參數(shù)),將其代入,得,,設,對應的參數(shù)分別為,,則,,,異號,.22、(1)a,b=﹣1(2)f(x)min=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論