高中數(shù)學(xué)同步講義(人教A版必修一):第27講 4.5.1函數(shù)的零點與方程的解(學(xué)生版)_第1頁
高中數(shù)學(xué)同步講義(人教A版必修一):第27講 4.5.1函數(shù)的零點與方程的解(學(xué)生版)_第2頁
高中數(shù)學(xué)同步講義(人教A版必修一):第27講 4.5.1函數(shù)的零點與方程的解(學(xué)生版)_第3頁
高中數(shù)學(xué)同步講義(人教A版必修一):第27講 4.5.1函數(shù)的零點與方程的解(學(xué)生版)_第4頁
高中數(shù)學(xué)同步講義(人教A版必修一):第27講 4.5.1函數(shù)的零點與方程的解(學(xué)生版)_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

第05講4.5.1函數(shù)的零點與方程的解課程標(biāo)準(zhǔn)學(xué)習(xí)目標(biāo)①了解函數(shù)的零點與方程的解的關(guān)系,并能結(jié)合函數(shù)的圖象判定函數(shù)的零點。②能根據(jù)函數(shù)零點存在性定理對函數(shù)零點存在進行判定,同時能處理與函數(shù)零點問題相結(jié)合的求參數(shù)及綜合類的問題。通過本節(jié)課的學(xué)習(xí),要求能判定函數(shù)零點的存在,同時能解決與函數(shù)零點相結(jié)合的綜合問題知識點01:函數(shù)零點的概念1、函數(shù)零點的概念對于一般函數(shù),我們把使的實數(shù)叫做函數(shù)的零點.幾何定義:函數(shù)的零點就是方程的實數(shù)解,也就是函數(shù)的圖象與軸的公共點的橫坐標(biāo).

這樣:方程有實數(shù)解函數(shù)有零點函數(shù)的圖象與軸有公共點2、已學(xué)基本初等函數(shù)的零點①一次函數(shù)只有一個零點;②反比例函數(shù)沒有零點;③指數(shù)函數(shù)(且)沒有零點;④對數(shù)函數(shù)(且)只有一個零點1;⑤冪函數(shù)當(dāng)時,有一個零點0;當(dāng)時,無零點。知識點02:函數(shù)零點存在定理及其應(yīng)用1、函數(shù)零點存在定理如果函數(shù)在區(qū)間上的圖象是一條連續(xù)不斷的曲線,且有,那么函數(shù)在區(qū)間內(nèi)至少有一個零點,即存在,使得,這個也就是方程的解.說明:定理要求具備兩個條件:①函數(shù)在區(qū)間上的圖象是連續(xù)不斷的;②.兩個條件缺一不可.2、函數(shù)零點的求法①代數(shù)法:根據(jù)零點定義,求出方程的實數(shù)解;②數(shù)形結(jié)合法:作出函數(shù)圖象,利用函數(shù)性質(zhì)求解【即學(xué)即練1】(2023春·四川廣安·高一校考階段練習(xí))函數(shù)的零點為.【答案】2【詳解】令,則,得.故答案為:3、函數(shù)零點個數(shù)的判斷①利用代數(shù)法,求出所有零點;②數(shù)形結(jié)合,通過作圖,找出圖象與軸交點的個數(shù);③數(shù)形結(jié)合,通過分離,將原函數(shù)拆分成兩個函數(shù),找到兩個函數(shù)圖象交點的個數(shù);④函數(shù)零點唯一:函數(shù)存在零點+函數(shù)單調(diào).知識點03:二次函數(shù)的零點問題一元二次方程的實數(shù)根也稱為函數(shù)的零點.當(dāng)時,一元二次方程的實數(shù)根、二次函數(shù)的零點之間的關(guān)系如下表所示:的實數(shù)根(其中)方程無實數(shù)根的圖象的零點函數(shù)無零點【即學(xué)即練2】(2023·高一課時練習(xí))若函數(shù)的一個零點是1,則它的另一個零點是.【答案】3【詳解】由,所以令或,故另一個零點為3故答案為:3題型01求函數(shù)的零點【典例1】(2023·全國·高三專題練習(xí))函數(shù)的零點為.【典例2】(2023秋·遼寧鐵嶺·高一鐵嶺市清河高級中學(xué)??计谀┮阎瘮?shù),則函數(shù)的零點為.【變式1】(2023春·浙江·高一校聯(lián)考期中)函數(shù)的零點是【變式2】(2023·江蘇·高一假期作業(yè))求下列函數(shù)的零點.(1);(2).題型02函數(shù)零點個數(shù)的判斷【典例1】(2023·全國·高一假期作業(yè))函數(shù)的零點個數(shù)為()A.1 B.2C.1或2 D.0【典例2】(2023·高一課時練習(xí))方程的實數(shù)解的個數(shù)是(

)A.0 B.1 C.2 D.3【典例3】(2023·全國·高三專題練習(xí))已知,方程的實根個數(shù)為.【典例4】(2023春·山東德州·高二??茧A段練習(xí))若函數(shù),則函數(shù)的零點個數(shù)是.【變式1】(2023·全國·高一假期作業(yè))函數(shù)的零點的個數(shù)是(

)A.0 B.1 C.2 D.無數(shù)個【變式2】(2023·江蘇·高一假期作業(yè))已知函數(shù).(1)作出函數(shù)的圖象;(2)就a的取值范圍討論函數(shù)的零點的個數(shù).【變式3】(2023·上海浦東新·華師大二附中校考模擬預(yù)測)若的值域為,則至多有個零點.【變式4】(2023·全國·高三對口高考)函數(shù)的圖象與函數(shù)的圖象的交點個數(shù)為個.題型03判斷函數(shù)零點所在的區(qū)間【典例1】(2023春·云南楚雄·高一統(tǒng)考期末)若是方程的解,則(

)A. B. C. D.【典例2】(2023春·天津紅橋·高二統(tǒng)考學(xué)業(yè)考試)設(shè)為方程的解,若,則的值為.【變式1】(2023秋·重慶長壽·高一統(tǒng)考期末)函數(shù)的零點所在區(qū)間是(

)A. B. C. D.【變式2】(2023春·湖南岳陽·高一湖南省岳陽縣第一中學(xué)??计谀┖瘮?shù)的零點為,且,,則k的值為(

)A.1 B.2 C.0 D.3題型04已知零點個數(shù)求參數(shù)的取值范圍【典例1】(2023·全國·高一假期作業(yè))若方程有兩個不同的實數(shù)根,則實數(shù)的取值范圍為(

)A. B. C. D.【典例2】(2023·湖南常德·常德市一中??寄M預(yù)測)設(shè)表示m,n中的較小數(shù).若函數(shù)至少有3個零點,則實數(shù)的取值范圍是(

)A. B.C. D.【典例3】(2023·高一課時練習(xí))若函數(shù)有2個零點,求實數(shù)a的取值范圍.【典例4】(2023春·云南昆明·高三云南省昆明市第十二中學(xué)校考階段練習(xí))已知函數(shù)是偶函數(shù).當(dāng)時,.(1)求函數(shù)在上的解析式;(2)若函數(shù)在區(qū)間上單調(diào),求實數(shù)a的取值范圍;(3)已知,試討論的零點個數(shù),并求對應(yīng)的m的取值范圍.【變式1】(2023·北京·高三專題練習(xí))設(shè),函數(shù)若恰有一個零點,則的取值范圍是(

)A. B.C. D.【變式2】(多選)(2023·全國·高三專題練習(xí))已知函數(shù),若關(guān)于x的方程恰有兩個互異的實數(shù)解,則實數(shù)a的值可以是(

)A.0 B.1 C. D.2【變式3】(2023·全國·高一假期作業(yè))若函數(shù)在內(nèi)有且只有一個零點,則的取值集合是.【變式4】(2023·高一課時練習(xí))已知是定義在上的偶函數(shù).(1)求的值;(2)畫出的圖象,并指出其單調(diào)減區(qū)間;(3)若關(guān)于的方程有2個不相等的實數(shù)根,求實數(shù)的取值范圍.題型05已知零點所在區(qū)間求參數(shù)的取值范圍【典例1】(2023春·河南信陽·高一統(tǒng)考期末)函數(shù)在區(qū)間上存在零點,則實數(shù)的取值范圍是(

)A. B.C. D.【典例2】(多選)(2023秋·高一單元測試)函數(shù)的一個零點在區(qū)間內(nèi),則實數(shù)a的可能取值是(

)A.0 B.1 C.2 D.3【典例3】(2023·全國·高三專題練習(xí))設(shè)為實數(shù),函數(shù)在上有零點,則實數(shù)的取值范圍為.【變式1】(2023·高一課時練習(xí))若函數(shù)在內(nèi)恰有一個零點,則a的取值范圍(

)A. B. C. D.【變式2】(2023春·上海青浦·高一統(tǒng)考開學(xué)考試)若關(guān)于的方程在上有解,則實數(shù)的取值范圍是.【變式3】(2023秋·湖北襄陽·高一統(tǒng)考期末)若函數(shù)在區(qū)間內(nèi)有零點,則實數(shù)的取值范圍是.題型06二次函數(shù)的零點問題【典例1】(2023秋·江蘇常州·高一常州市北郊高級中學(xué)??计谀┮阎瘮?shù)的零點為,滿足,則的取值范圍為(

)A. B.C. D.【典例2】(2023·高一課時練習(xí))方程的一根大于1,一根小于1,則實數(shù)的取值范圍是.【典例3】(2023·江蘇·高一假期作業(yè))(1)判斷二次函數(shù)在內(nèi)是否存在零點;(2)若二次函數(shù)的兩個零點均為正數(shù),求實數(shù)的取值范圍.【變式1】(2023·云南紅河·彌勒市一中??寄M預(yù)測)已知關(guān)于的方程,存在兩個不同的實根,則實數(shù)的取值范圍為(

)A. B.C. D.【變式2】(2023·高一課時練習(xí))若關(guān)于的方程在內(nèi)有解,則實數(shù)的取值范圍是(

)A. B. C. D.【變式3】(2023·江蘇·高一假期作業(yè))已知函數(shù).(1)若該函數(shù)有兩個不相等的正零點,求的取值范圍;(2)若該函數(shù)有兩個零點,一個大于1,另一個小于1,求的取值范圍.題型07函數(shù)與方程綜合【典例1】(2023秋·高一單元測試)已知函數(shù),常數(shù).(1)若是奇函數(shù),求的值;(2)若,在區(qū)間內(nèi)有且僅有一個零點,求實數(shù)的取值范圍.【典例2】(2023春·福建福州·高二福建省福州延安中學(xué)??紝W(xué)業(yè)考試)已知函數(shù)(1)證明:函數(shù)在上單調(diào)遞減;(2)討論關(guān)于x的方程的實數(shù)解的個數(shù).【變式1】(2023秋·江蘇無錫·高一無錫市第一中學(xué)??计谀┮阎瘮?shù)為奇函數(shù).(1)求實數(shù)a的值;(2)若方程在區(qū)間上無解,求實數(shù)m的取值范圍.【變式2】(2023·全國·高三專題練習(xí))已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時,,函數(shù)在軸左側(cè)的圖象如圖所示.(1)求函數(shù)的解析式;(2)若關(guān)于的方程有個不相等的實數(shù)根,求實數(shù)的取值范圍.A夯實基礎(chǔ)B能力提升C綜合素養(yǎng)A夯實基礎(chǔ)一、單選題1.(2023春·黑龍江齊齊哈爾·高一校聯(lián)考開學(xué)考試)已知函數(shù),則的零點所在的區(qū)間為(

).A. B. C. D.2.(2023·全國·高一假期作業(yè))已知方程的解在內(nèi),則(

)A.3 B.2 C.1 D.03.(2023·江蘇·高一假期作業(yè))已知函數(shù)的兩個零點都大于2,則實數(shù)m的取值范圍是()A.B.C.D.4.(2023·高一課時練習(xí))已知二次函數(shù),若,則在區(qū)間內(nèi)的零點情況是(

)A.有兩個零點 B.有唯一零點 C.沒有零點 D.不確定5.(2023春·山東聊城·高二統(tǒng)考期末)已知函數(shù),,的零點分別為,,,則(

)A. B.C. D.6.(2023春·浙江溫州·高二統(tǒng)考學(xué)業(yè)考試)設(shè)實數(shù)a為常數(shù),則函數(shù)存在零點的充分必要條件是(

)A. B. C. D.7.(2023春·江蘇南通·高二統(tǒng)考期末)已知函數(shù)若函數(shù)有五個零點,則實數(shù)的取值范圍是(

)A. B. C. D.8.(2023春·河南駐馬店·高一河南省駐馬店高級中學(xué)??茧A段練習(xí))享有“數(shù)學(xué)王子”稱號的德國數(shù)學(xué)家高斯,是近代數(shù)學(xué)奠基者之一,被稱為“高斯函數(shù)”,其中表示不超過的最大整數(shù),例如:,設(shè)為函數(shù)的零點,則(

)A.3 B.4 C.5 D.6二、多選題9.(2023·全國·高一假期作業(yè))函數(shù)的零點可以是()A. B.C. D.10.(2023·高一課時練習(xí))設(shè)為定義在R上的奇函數(shù),當(dāng)時,為常數(shù)),則(

)A. B.C. D.函數(shù)僅有一個零點三、填空題11.(2023·江蘇·高一假期作業(yè))已知函數(shù)在上有零點,則實數(shù)a的取值范圍是.12.(2023春·江蘇揚州·高一揚州市廣陵區(qū)紅橋高級中學(xué)??计谥校┤羰欠匠痰慕?,則在區(qū)間內(nèi)(填序號).①;②;③;④.四、解答題13.(2023·高一課時練習(xí))已知一次函數(shù)滿足,.(1)求這個函數(shù)的解析式;(2)若函數(shù),求函數(shù)的零點.14.(2023秋·陜西西安·高一統(tǒng)考期末)已知函數(shù),且的圖象經(jīng)過點.(1)求的值;(2)求在區(qū)間上的最小值;(3)若,求證:在區(qū)間內(nèi)存在零點.B能力提升1.(2023春·浙江衢州·高一統(tǒng)考期末)已知函數(shù),若且,則的取值范圍是(

)A. B. C. D.2.(2023春·天津·高二統(tǒng)考期末)已知函數(shù),,.若恰有2個零點,則實數(shù)的取值范圍是(

)A. B. C. D.3.(2023春·浙江·高一景寧中學(xué)校聯(lián)考階段練習(xí))函數(shù)滿足:①在內(nèi)是單調(diào)遞增函數(shù);②在上的值域為,則稱區(qū)間為的級“調(diào)和區(qū)間”.若函數(shù)存在級“調(diào)和區(qū)間”,則的取值范圍是.4.(2023春·浙江杭州·高一統(tǒng)考期末)對于函數(shù),若存在,使得,則稱為函數(shù)的“不動點”.若存在,使得,則稱為函數(shù)的“穩(wěn)定點”.記函數(shù)的“不動點”和“穩(wěn)定點”的集合分別為和,即.經(jīng)研究發(fā)現(xiàn):若函數(shù)為增函數(shù),則.設(shè)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論