




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
云南省西疇縣第二中學(xué)2024屆高二上數(shù)學(xué)期末預(yù)測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.七巧板是中國古代勞動(dòng)人民發(fā)明的一種傳統(tǒng)智力玩具,它由五塊等腰直角三角形、一塊正方形和一塊平行四邊形共七塊板組成如圖是一個(gè)用七巧板拼成的正方形,若在此正方形中任取一點(diǎn),則此點(diǎn)取自陰影部分的概率為()A. B.C. D.2.函數(shù)在的圖象大致為()A. B.C D.3.已知數(shù)列通項(xiàng)公式,則()A.6 B.13C.21 D.314.已知向量,,且與互相垂直,則()A. B.C. D.5.南宋數(shù)學(xué)家楊輝在《詳解九章算法》中討論過高階等差數(shù)列與一般等差數(shù)列不同,前后兩項(xiàng)之差并不相等,而是逐項(xiàng)差數(shù)之差或者高次差相等.例如“百層球堆垛”:第一層有1個(gè)球,第二層有3個(gè)球,第三層有6個(gè)球,第四層有10個(gè)球,第五層有15個(gè)球,…,各層球數(shù)之差:,,,,…即2,3,4,5,…是等差數(shù)列.現(xiàn)有一個(gè)高階等差數(shù)列,其前6項(xiàng)分別為1,3,6,12,23,41,則該數(shù)列的第8項(xiàng)為()A.51 B.68C.106 D.1576.金剛石的成分為純碳,是自然界中天然存在的最堅(jiān)硬物質(zhì),它的結(jié)構(gòu)是由8個(gè)等邊三角形組成的正八面體.若某金剛石的棱長為2,則它的體積為()A. B.C. D.7.直線與橢圓交于兩點(diǎn),以線段為直徑的圓恰好經(jīng)過橢圓的左焦點(diǎn),則此橢圓的離心率為()A B.C. D.8.已知x,y是實(shí)數(shù),且,則的最大值是()A. B.C. D.9.已知a,b是互不重合直線,,是互不重合的平面,下列命題正確的是()A.若,,則B.若,,,則C.若,,則D.若,,,則10.設(shè)是兩個(gè)不同的平面,是一條直線,以下命題正確的是A.若,則 B.若,則C.若,則 D.若,則11.在拋物線上,橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5,則p的值為()A. B.2C.1 D.412.某市統(tǒng)計(jì)局網(wǎng)站公布了2017年至2020年該市政府部門網(wǎng)站的每年的兩項(xiàng)訪問量,數(shù)據(jù)如下:年度項(xiàng)目2017年2018年2019年2020年獨(dú)立用戶訪問總量(單位:個(gè))2512573924400060989網(wǎng)站總訪問量(單位:次)23435370348194783219288下列表述中錯(cuò)誤的是()A.2017年至2018年,兩項(xiàng)訪問量都增長幅度較大;B.2018年至2019年,兩項(xiàng)訪問量都有所回落;C.2019年至2020年,兩項(xiàng)訪問量都又有所增長;D.從數(shù)據(jù)可以看出,該市政府部門網(wǎng)站的兩項(xiàng)訪問量都呈逐年增長態(tài)勢(shì)二、填空題:本題共4小題,每小題5分,共20分。13.若雙曲線的左、右焦點(diǎn)為,,直線與雙曲線交于兩點(diǎn),且,為坐標(biāo)原點(diǎn),又,則該雙曲線的離心率為__________.14.阿波羅尼斯與阿基米德、歐幾里得被稱為亞歷山大時(shí)期的數(shù)學(xué)三巨匠.“阿波羅尼斯圓”是他的代表成果之一:平面上動(dòng)點(diǎn)P到兩定點(diǎn)A,B的距離之比滿足(且,t為常數(shù)),則點(diǎn)的軌跡為圓.已知在平面直角坐標(biāo)系中,,,動(dòng)點(diǎn)P滿足,則P點(diǎn)的軌跡為圓,該圓方程為_________;過點(diǎn)的直線交圓于兩點(diǎn),且,則_________15.在中,,是線段上的點(diǎn),,若的面積為,當(dāng)取到最大值時(shí),___________.16.過點(diǎn)作圓的切線,則切線方程為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在正方體中,E,F(xiàn)分別是,的中點(diǎn)(1)求證:∥平面;(2)求平面與平面EDC所成的二面角的正弦值18.(12分)如圖,在多面體中,平面平面.四邊形為正方形,四邊形為梯形,且,,,(1)求證:;(2)求直線與平面所成角的正弦值;(3)線段上是否存在點(diǎn),使得直線平面?若存在,求的值;若不存在,請(qǐng)說明理由19.(12分)已知橢圓的方程為,雙曲線的左、右焦點(diǎn)分別是的左、右頂點(diǎn),而的左、右頂點(diǎn)分別是的左、右焦點(diǎn)(1)求雙曲線的方程;(2)若直線與雙曲線恒有兩個(gè)不同的交點(diǎn)和,且(其中為原點(diǎn)),求的取值范圍20.(12分)已知函數(shù)(1)討論的單調(diào)區(qū)間;(2)求在上的最大值.21.(12分)設(shè)數(shù)列的前項(xiàng)和為,已知,且.(1)證明:數(shù)列為等比數(shù)列;(2)若,是否存在正整數(shù),使得對(duì)任意恒成立?若存在、求的值;若不存在,說明理由.22.(10分)如圖,正方體的棱長為,分別是的中點(diǎn),點(diǎn)在棱上,().(Ⅰ)三棱錐的體積分別為,當(dāng)為何值時(shí),最大?最大值為多少?(Ⅱ)若平面,證明:平面平面.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】設(shè)正方形的邊長為,計(jì)算出陰影部分區(qū)域的面積和正方形區(qū)域的面積,然后利用幾何概型的概率公式計(jì)算出所求事件的概率.【詳解】設(shè)大正方形的邊長為,則面積為,陰影部分由一個(gè)大等腰直角三角形和一個(gè)梯形組成大等腰直角三角形的面積為,梯形的上底為,下底為,高為,面積為,故所求概率故選:D.2、D【解析】函數(shù)|在[–2,2]上是偶函數(shù),其圖象關(guān)于軸對(duì)稱,因?yàn)?,所以排除選項(xiàng);當(dāng)時(shí),有一零點(diǎn),設(shè)為,當(dāng)時(shí),為減函數(shù),當(dāng)時(shí),為增函數(shù)故選:D.3、C【解析】令即得解.【詳解】解:令得.故選:C4、D【解析】根據(jù)垂直關(guān)系可得,由向量坐標(biāo)運(yùn)算可構(gòu)造方程求得結(jié)果.【詳解】,,又與互相垂直,,解得:.故選:D.5、C【解析】對(duì)高階等差數(shù)列按其定義逐一進(jìn)行構(gòu)造數(shù)列,直到出現(xiàn)一般等差數(shù)列為止,再根據(jù)其遞推關(guān)系進(jìn)行求解.【詳解】現(xiàn)有一個(gè)高階等差數(shù)列,其前6項(xiàng)分別為1,3,6,12,23,41,各項(xiàng)與前一項(xiàng)之差:,,,,,…即2,3,6,11,18,…,,,,,…即1,3,5,7,…是等差數(shù)列,所以,故選:C6、C【解析】由幾何關(guān)系先求出一個(gè)正四面體的高,再結(jié)合錐體體積公式即可求解正八面體的體積.【詳解】如圖,設(shè)底面中心為,連接,由幾何關(guān)系知,,則正八面體體積為.故選:C7、D【解析】根據(jù)題意作出示意圖,根據(jù)圓的性質(zhì)以及直線的傾斜角求解出的長度,再根據(jù)橢圓的定義求解出的關(guān)系,則橢圓離心率可求.【詳解】設(shè)橢圓的左右焦點(diǎn)分別為,如下圖:因?yàn)橐跃€段為直徑的圓恰好經(jīng)過橢圓的左焦點(diǎn),所以且,所以,又因?yàn)榈膬A斜角為,所以,所以為等邊三角形,所以,所以,因?yàn)?,所以,所以,所以,所以,故選:D.8、D【解析】將方程化為圓的標(biāo)準(zhǔn)方程,則的幾何意義是圓上一點(diǎn)與點(diǎn)連線的斜率,進(jìn)而根據(jù)直線與圓相切求得答案.【詳解】方程可化為,表示以為圓心,為半徑的圓,的幾何意義是圓上一點(diǎn)與點(diǎn)A連線的斜率,設(shè),即,當(dāng)此直線與圓相切時(shí),斜率最大或最小,當(dāng)切線位于切線AB時(shí)斜率最大.此時(shí),,,所以的最大值為.故選:D9、B【解析】根據(jù)線線,線面,面面位置關(guān)系的判定方法即可逐項(xiàng)判斷.【詳解】A:若,,則或a,故A錯(cuò)誤;B:若,,則a⊥β,又,則a⊥b,故B正確;C:若,,則或α與β相交,故C錯(cuò)誤;D:若,,,則不能判斷α與β是否垂直,故D錯(cuò)誤.故選:B.10、C【解析】對(duì)于A、B、D均可能出現(xiàn),而對(duì)于C是正確的11、B【解析】由方程可得拋物線的焦點(diǎn)和準(zhǔn)線,進(jìn)而由拋物線的定義可得,解之可得值【詳解】解:由題意可得拋物線開口向右,焦點(diǎn)坐標(biāo),,準(zhǔn)線方程,由拋物線的定義可得拋物線上橫坐標(biāo)為4的點(diǎn)到準(zhǔn)線的距離等于5,即,解之可得.故選:B.12、D【解析】根據(jù)表格數(shù)據(jù),結(jié)合各選項(xiàng)的描述判斷正誤即可.【詳解】A:2017年至2018年,兩項(xiàng)訪問量分別增長、,顯然增長幅度相較于后兩年是最大的,正確;B:2018年至2019年,兩項(xiàng)訪問量相較于2017年至2018年都有回落,正確;C:2019年至2020年,兩項(xiàng)訪問量分別增長、,正確;D:由B分析知,該市政府部門網(wǎng)站的兩項(xiàng)訪問量在2018年至2019年有回落,而不是逐年增長態(tài)勢(shì),錯(cuò)誤.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)直線和雙曲線的對(duì)稱性,結(jié)合圓的性質(zhì)、雙曲線的定義、三角形面積公式、雙曲線離心率公式進(jìn)行求解即可.【詳解】由直線與雙曲線的對(duì)稱性可知,點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱,在三角形中,,所以,是以為直徑的圓與雙曲線的交點(diǎn),不妨設(shè)在第一象限,,因?yàn)閳A是以為直徑,所以圓的半徑為,因?yàn)辄c(diǎn)在圓上,也在雙曲線上,所以有,聯(lián)立化簡(jiǎn)可得,整理得,,所以,由所以,又因?yàn)?,?lián)立可得,,因?yàn)闉閳A的直徑,所以,即,,所以離心率.故答案為:【點(diǎn)睛】關(guān)鍵點(diǎn)睛:利用直線和雙曲線的對(duì)稱性,結(jié)合圓的性質(zhì)進(jìn)行求解是解題的關(guān)鍵.14、①.②.【解析】設(shè),根據(jù)可得圓的方程,利用垂徑定理可求.【詳解】設(shè),則,整理得到,即.因?yàn)?,故為的中點(diǎn),過圓心作的垂線,垂足為,則為的中點(diǎn),則,故,解得,故答案為:,.15、【解析】由三角形面積公式得出,設(shè),由可得出,利用基本不等式可求出的值,利用等號(hào)成立可得出、的值,再利用余弦利用可得出的值.【詳解】由題意可得,解得,設(shè),則,可得,由基本不等式可得,當(dāng)且僅當(dāng)時(shí),取得最大值,,,由余弦定理得,解得.故答案為【點(diǎn)睛】本題考查余弦定理解三角形,同時(shí)也考查了三角形的面積公式以及利用基本不等式求最值,在利用基本不等式求最值時(shí),需要結(jié)合已知條件得出定值條件,同時(shí)要注意等號(hào)成立的條件,考查分析問題和解決問題的能力,屬于中等題.16、【解析】求出切點(diǎn)與圓心連線的斜率后可得切線方程.【詳解】因?yàn)辄c(diǎn)在圓上,故切線必垂直于切點(diǎn)與圓心連線,而切點(diǎn)與圓心連線的斜率為,故切線的斜率為,故切線方程為:即.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】(1)連接,,連接,證明CE∥即可;(2)建立空間直角坐標(biāo)系,求出平面與平面EDC的法向量,利用向量法求二面角的正弦值.【小問1詳解】如圖,連接,,連接,∵BC∥且BC=,∴四邊形是平行四邊形,∴∥且,∵E是中點(diǎn),G是中點(diǎn),∴∥CG且,∴四邊形是平行四邊形,∴∥CE,∵平面,CE平面,∴CE∥平面;【小問2詳解】如圖建立空間直角坐標(biāo)系,設(shè)正方體的棱長為2,則,則,設(shè)平面的法向量為,則,?。辉O(shè)平面EDC的法向量為,則,取,則;設(shè)平面與平面EDC所成的二面角的平面角為α,則,∴18、(1)證明見解析(2)(3)存在點(diǎn),使得平面,且【解析】(1)由面面垂直的性質(zhì)可得平面,再由線面垂直的性質(zhì)可證得結(jié)論,(2)可證得兩兩垂直,所以分別以為軸,軸,軸建立空間直角坐標(biāo)系,利用空間向量求解,(3)設(shè),然后利用空間向量求解【小問1詳解】證明:因?yàn)闉檎叫?,所以又因?yàn)槠矫嫫矫妫移矫嫫矫?,所以平面平面所以;【小?詳解】由(1)可知,平面,所以,因?yàn)?,所以兩兩垂直分別以為軸,軸,軸建立空間直角坐標(biāo)系(如圖)因?yàn)?,,所以,所以,設(shè)平面的一個(gè)法向量為,則,即令,則,;所以設(shè)直線與平面所成角為,則直線與平面所成角為的正弦值為;【小問3詳解】設(shè),易知設(shè),則,所以,所以,所以設(shè)平面的一個(gè)法向量為,則,因?yàn)?,所以令,則,所以在線段上存在點(diǎn),使得平面等價(jià)于存在,使得因?yàn)?,由,所以,解得,所以線段上存在點(diǎn),使得平面,且19、(1);(2)【解析】(1)求出橢圓的焦點(diǎn)和頂點(diǎn),即得雙曲線的頂點(diǎn)和焦點(diǎn),從而易求得標(biāo)準(zhǔn)方程;(2)將代入,得由直線與雙曲線交于不同的兩點(diǎn),得的取值范圍,設(shè),由韋達(dá)定理得則代入可求得的范圍【詳解】(1)設(shè)雙曲線的方程為,則,再由,得故的方程為(2)將代入,得由直線與雙曲線交于不同的兩點(diǎn),得①設(shè)則又,得,,即,解得②由①②得<k2<1,故的取值范圍【點(diǎn)睛】本題考查雙曲線的標(biāo)準(zhǔn)方程,考查直線與雙曲線相交中的范圍問題.應(yīng)注意:(1)利用圓錐曲線的幾何性質(zhì)或判別式構(gòu)造不等關(guān)系,從而確定參數(shù)的取值范圍(2)利用已知參數(shù)的范圍,求新參數(shù)的范圍,解這類問題的核心是建立兩個(gè)參數(shù)之間的等量關(guān)系(3)利用隱含的不等關(guān)系建立不等式,從而求出參數(shù)的取值范圍(4)利用已知的不等關(guān)系構(gòu)造不等式,從而求出參數(shù)的取值范圍(5)利用求函數(shù)的值域的方法將待求量表示為其他變量的函數(shù),求其值域,從而確定參數(shù)的取值范圍20、(1)①,在上單減;②,在上單增,單減;(2).【解析】(1),根據(jù)函數(shù)定義域,分,,討論求解;(2)根據(jù)(1)知:分,,,討論求解.【小問1詳解】解:(1)定義域,①時(shí),成立,所以在上遞減;②時(shí),當(dāng)時(shí),,當(dāng)時(shí),,所以在上單增,單減;【小問2詳解】由(1)知:時(shí),在單減,所以;時(shí),在單減,所以;時(shí),在上單增,上遞減,所以;時(shí),在單增,所以;綜上:.21、(1)證明見解析(2)【解析】(1)由已知條件有,根據(jù)等比數(shù)列的定義即可證明;(2)由(1)求出及,進(jìn)而可得,利用二次函數(shù)的性質(zhì)即可求解的最小值,從而可得答案.【小問1詳解】證明:因?yàn)?,所以,又因?yàn)?,所以,所以?shù)列是首項(xiàng)為2公比為2的等比數(shù)列;【小問2詳解】解:由(1)知,,所以,所以,檢驗(yàn)時(shí)也滿足上式,所以,所以,令,所以,故當(dāng)即時(shí),取得最小值,所以.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- CAB 1025-2013汽車塑料(注塑)腳墊
- 2024年微波集成電路AL2O3基片資金籌措計(jì)劃書代可行性研究報(bào)告
- 2024年甲氧基酚資金籌措計(jì)劃書代可行性研究報(bào)告
- 直播銷售電子教案 項(xiàng)目七任務(wù)一:直播銷售數(shù)據(jù)采集 教案
- 2025年中國變色玻璃行業(yè)市場(chǎng)前景預(yù)測(cè)及投資價(jià)值評(píng)估分析報(bào)告
- 2025年嵌入式考試政策解讀試題及答案
- 高端體育賽事品牌贊助全面合作協(xié)議
- 抖音火花汽車行業(yè)品牌合作共贏合同
- 虛擬偶像IP與動(dòng)漫產(chǎn)業(yè)聯(lián)合開發(fā)合同
- 2025年中國保險(xiǎn)杠行業(yè)市場(chǎng)前景預(yù)測(cè)及投資價(jià)值評(píng)估分析報(bào)告
- 浙江省杭州市濱江區(qū)2022-2023學(xué)年七年級(jí)下學(xué)期期末語文試卷(含答案)
- 誠信教育主題班會(huì)
- 成都醫(yī)學(xué)院輔導(dǎo)員考試真題2022
- 氯磺化聚乙烯生產(chǎn)工藝技術(shù)
- 桐廬縣2023年三下數(shù)學(xué)期末綜合測(cè)試試題含解析
- 裝飾施工階段安全檢查表完整
- 數(shù)值課件第章非線性方程求根
- TEC-5600除顫操作培訓(xùn)
- 蘇科版二年級(jí)下冊(cè)勞動(dòng)第7課《做皮影》課件
- 芯片手冊(cè)盛科sdk用戶開發(fā)指南
- SH/T 0659-1998瓦斯油中飽和烴餾分的烴類測(cè)定法(質(zhì)譜法)
評(píng)論
0/150
提交評(píng)論