版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
云南省怒江市2024屆高二數(shù)學第一學期期末學業(yè)質量監(jiān)測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是雙曲線C的兩個焦點,P為C上一點,且,則C的離心率為()A. B.C. D.2.已知,則a,b,c的大小關系為()A. B.C. D.3.命題“,”的否定為()A., B.,C., D.,4.如圖,已知四棱錐,底面ABCD是邊長為4的菱形,且,E為AD的中點,,則異面直線PC與BE所成角的余弦值為()A. B.C. D.5.已知雙曲線的左右焦點分別為、,過作的一條漸近線的垂線,垂足為,若的面積為,則的漸近線方程為A. B.C. D.6.美學四大構件是:史詩、音樂、造型(繪畫、建筑等)和數(shù)學.素描是學習繪畫的必要一步,它包括明暗素描和結構素描,而學習幾何體結構素描是學習素描最重要的一步.某同學在畫切面圓柱體(用與圓柱底面不平行的平面去截圓柱,底面與截面之間的部分叫做切面圓柱體,原圓柱的母線被截面所截剩余的部分稱為切面圓柱體的母線)的過程中,發(fā)現(xiàn)“切面”是一個橢圓,若切面圓柱體的最長母線與最短母線所確定的平面截切面圓柱體得到的截面圖形是有一個底角為60度的直角梯形,則該橢圓的離心率為()A. B.C. D.7.已知數(shù)列的前項和為,當時,()A.11 B.20C.33 D.358.已知圓的方程為,則圓心的坐標為()A. B.C. D.9.已知拋物線C:,則過拋物線C的焦點,弦長為整數(shù)且不超過2022的直線的條數(shù)是()A.4037 B.4044C.2019 D.202210.已知雙曲線的左、右焦點分別為,,為坐標原點,為雙曲線在第一象限上的點,直線,分別交雙曲線的左,右支于另一點,,若,且,則雙曲線的離心率為()A. B.3C.2 D.11.紫砂壺是中國特有的手工制造陶土工藝品,其制作始于明朝正德年間.紫砂壺的壺型眾多,經(jīng)典的有西施壺、掇球壺、石瓢壺、潘壺等.其中,石瓢壺的壺體可以近似看成一個圓臺(即圓錐用平行于底面的平面截去一個錐體得到的).下圖給出了一個石瓢壺的相關數(shù)據(jù)(單位:cm),那么該壺的容量約為()A.100 B.C.300 D.40012.如圖,空間四邊形中,,,,且,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的左焦點為,點在橢圓上且在軸的上方,若線段的中點在以原點為圓心,為半徑的圓上,則直線的斜率是_______.14.若、是雙曲線的左右焦點,過的直線與雙曲線的左右兩支分別交于,兩點.若為等邊三角形,則雙曲線的離心率為________.15.在三棱錐中,點Р在底面ABC內的射影為Q,若,則點Q定是的______心16.設函數(shù)是函數(shù)的導函數(shù),已知,且,則使得成立的x的取值范圍是_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)討論的單調性:(2)若對恒成立,求的取值范圍18.(12分)已知函數(shù),.(1)若,求曲線在點處的切線方程;(2)若函數(shù)在上是減函數(shù),求實數(shù)的取值范圍.19.(12分)設數(shù)列的前項和為,,且,,(1)若(i)求;(ii)求證數(shù)列成等差數(shù)列(2)若數(shù)列為遞增數(shù)列,且,試求滿足條件的所有正整數(shù)的值20.(12分)某車間打算購買2臺設備,該設備有一個易損零件,在購買設備時可以額外購買這種易損零件作為備件,價格為每個100元.在設備使用期間,零件損壞,備件不足再臨時購買該零件,價格為每個300元.在使用期間,每臺設備需要更換的零件個數(shù)的分布列為567.表示2臺設備使用期間需更換的零件數(shù),代表購買2臺設備的同時購買易損零件的個數(shù).(1)求的分布列;(2)以購買易損零件所需費用的期望為決策依據(jù),試問在和中,應選哪一個?21.(12分)已知兩條直線,.設為實數(shù),分別根據(jù)下列條件求的值.(1);(2)直線在軸、軸上截距之和等于.22.(10分)設數(shù)列的前項和為,為等比數(shù)列,且,(1)求數(shù)列和的通項公式;(2)設,求數(shù)列的前項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)雙曲線的定義及條件,表示出,結合余弦定理可得答案.【詳解】因為,由雙曲線的定義可得,所以,;因為,由余弦定理可得,整理可得,所以,即.故選:A【點睛】關鍵點睛:雙曲線的定義是入手點,利用余弦定理建立間的等量關系是求解的關鍵.2、A【解析】根據(jù)給定條件構造函數(shù),再探討其單調性并借助單調性判斷作答.【詳解】令函數(shù),求導得,當時,,于是得在上單調遞減,而,則,即,所以,故選:A3、A【解析】利用含有一個量詞的命題的否定的定義求解.【詳解】因為命題“,”是全稱量詞命題,所以其否定是存在量詞命題,即為,,故選:A4、B【解析】根據(jù)異面直線的定義找出角即為所求,再利用余弦定理解三角形即可得出.【詳解】分別取BC,PB的中點F,G,連接DF,F(xiàn)G,DG,如圖,因為E為AD的中點,四邊形ABCD是菱形,所以,所以(其補角)是異面直線PC與BE所成的角因為底面ABCD是邊長為4菱形,且,,由余弦定理可知,所以,所以,所以異面直線PC與BE所成角的余弦值為,故選:B5、D【解析】求得,根據(jù)的面積列方程,由此求得,進而求得雙曲線的漸近線方程.【詳解】依題意,雙曲線的一條漸近線為,則,所以,所以,所以.所以雙曲線漸近線方程為.故選:D【點睛】本小題主要考查雙曲線漸近線的有關計算,屬于中檔題.6、A【解析】設圓柱的底面半徑為,由題意知,,橢圓的長軸長,短軸長為,可以求出的值,即可得離心率.【詳解】設圓柱的底面半徑為,依題意知,最長母線與最短母線所在截面如圖所示從而因此在橢圓中長軸長,短軸長,,故選:A【點睛】本題主要考查了橢圓的定義和橢圓離心力的求解,屬于基礎題.7、B【解析】由數(shù)列的性質可得,計算可得到答案.【詳解】由題意,.故答案為B.【點睛】本題考查了數(shù)列的前n項和的性質,屬于基礎題.8、A【解析】將圓的方程配成標準方程,可求得圓心坐標.【詳解】圓的標準方程為,圓心的坐標為.故選:A.9、A【解析】根據(jù)已知條件,結合拋物線的性質,先求出過焦點的最短弦長,再結合拋物線的對稱性,即可求解【詳解】∵拋物線C:,即,由拋物線的性質可得,過拋物線焦點中,長度最短的為垂直于y軸的那條弦,則過拋物線C的焦點,長度最短的弦的長為,由拋物線的對稱性可得,弦長在5到2022之間的有共有條,故弦長為整數(shù)且不超過2022的直線的條數(shù)是故選:A10、D【解析】由雙曲線的定義可設,,由平面幾何知識可得四邊形為平行四邊形,三角形,用余弦定理,可得,的方程,再由離心率公式可得所求值【詳解】由雙曲線的定義可得,由,可得,,結合雙曲線性質可以得到,而,結合四邊形對角線平分,可得四邊形為平行四邊形,結合,故,對三角形,用余弦定理,得到,結合,可得,,,代入上式子中,得到,即,結合離心率滿足,即可得出,故選:D【點睛】本題考查求雙曲線的離心率,熟記雙曲線的簡單性質即可,屬于??碱}型.11、B【解析】根據(jù)圓臺的體積等于兩個圓錐的體積之差,即可求出【詳解】設大圓錐的高為,所以,解得故故選:B【點睛】本題主要考查圓臺體積的求法以及數(shù)學在生活中的應用,屬于基礎題12、C【解析】根據(jù)空間向量的線性運算即可求解.【詳解】因為,又因為,,所以.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】結合圖形可以發(fā)現(xiàn),利用三角形中位線定理,將線段長度用坐標表示成圓的方程,與橢圓方程聯(lián)立可進一步求解.利用焦半徑及三角形中位線定理,則更為簡潔.【詳解】方法1:由題意可知,由中位線定理可得,設可得,聯(lián)立方程可解得(舍),點在橢圓上且在軸的上方,求得,所以方法2:焦半徑公式應用解析1:由題意可知,由中位線定理可得,即求得,所以.【點睛】本題主要考查橢圓的標準方程、橢圓的幾何性質、直線與圓的位置關系,利用數(shù)形結合思想,是解答解析幾何問題的重要途徑.14、【解析】根據(jù)雙曲線的定義算出△AF1F2中,|AF1|=2a,|AF2|=4a,由△ABF2是等邊三角形得∠F1AF2=120°,利用余弦定理算出c=a,結合雙曲線離心率公式即可算出雙曲線C的離心率.【詳解】因為△ABF2為等邊三角形,可知,A為雙曲線上一點,,B為雙曲線上一點,則,即,∴由,則,已知,在△F1AF2中應用余弦定理得:,得c2=7a2,則e2=7?e=故答案為:【點睛】方法點睛:求雙曲線的離心率,常常不能經(jīng)過條件直接得到a,c的值,這時可將或視為一個整體,把關系式轉化為關于或的方程,從而得到離心率的值.15、外【解析】由可得,故是的外心.【詳解】解:如圖,∵點在底面ABC內的射影為,∴平面又∵平面、平面、平面,∴、、.在和中,,∴,∴同理可得:,故故是的外心.故答案為:外.16、【解析】構造函數(shù)利用導數(shù)研究單調性,即可得到答案;【詳解】,令,,單調遞減,且,,x的取值范圍是,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)答案不唯一,具體見解析(2)【解析】(1)求導得,在分,兩種情況討論求解即可;(2)根據(jù)題意將問題轉化為對恒成立,進而構造函數(shù),求解函數(shù)最值即可.【小問1詳解】解:函數(shù)的定義域為,當時,令,得,令,得;當時,令,得,令,得綜上,當時,在上單調遞減,在上單調遞增;當時,在上單調遞增,在上單調遞減【小問2詳解】解:由(1)知,函數(shù)在上單調遞增,則,所以對恒成立等價于對恒成立設函數(shù),則,設,則,則在上單調遞減,所以,則,所以在上單調遞減,所以;故,即的取值范圍是18、(1).(2).【解析】分析:(1)由和可由點斜式得切線方程;(2)由函數(shù)在上是減函數(shù),可得在上恒成立,,由二次函數(shù)的性質可得解.詳解:(1)當時,所以,所以曲線在點處的切線方程為.(2)因為函數(shù)在上是減函數(shù),所以在上恒成立.做法一:令,有,得故.實數(shù)的取值范圍為做法二:即在上恒成立,則在上恒成立,令,顯然在上單調遞減,則,得實數(shù)的取值范圍為點睛:導數(shù)問題經(jīng)常會遇見恒成立的問題:(1)根據(jù)參變分離,轉化為不含參數(shù)的函數(shù)的最值問題;(2)若就可討論參數(shù)不同取值下的函數(shù)的單調性和極值以及最值,最終轉化為,若恒成立;(3)若恒成立,可轉化為(需在同一處取得最值).19、(1);詳見解析;(2)5.【解析】(1)由題可得,由條件可依次求各項,即得;猜想,用數(shù)學歸納法證明即得;(2)設,由題可得,進而可得,結合條件即求.【小問1詳解】(i)∵,且,,,∴,,,∴,,,又,,,∴,∴,解得,,解得,,解得,,解得,∴;(ii)由,,,,猜想數(shù)列是首項,公差為的等差數(shù)列,,用數(shù)學歸納法證明:當時,,成立;假設時,等式成立,即,則時,,∴,∴當時,等式也成立,∴,∴數(shù)列是首項,公差為的等差數(shù)列.【小問2詳解】設,由,,即,∴,又,,,∴,,,,,,∴,,,∴,又數(shù)列為遞增數(shù)列,∴,解得,由,∴,解得.【點睛】關鍵點點睛:第一問的關鍵是由條件猜想,然后數(shù)學歸納法證明,第二問求出,,即得.20、(1)答案見解析;(2)應選擇.【解析】(1)由每臺設備需更換零件個數(shù)的分布列求出的所有可能值,并求出對應的概率即可得解.(2)分別求出和時購買零件所需費用的期望,比較大小即可作答.【小問1詳解】的可能取值為10,11,12,13,14,,,,,,則的分布列為:10111213140.090.30.370.20.04【小問2詳解】記為當時購買零件所需費用,,,,,元,記為當時購買零件所需費用,,,,元,顯然,所以應選擇.21、(1);(2).【解析】(1)由兩直線平行可得出關于的等式,求出的值,再代入兩直線方程,驗證兩直線是否平行,由此可得出結果;(2)分析可知,求出直線在軸、軸上的截距,結合已知條件可得出關于的等式,即可解得的值.【小問1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 年度基礎地質勘查服務競爭策略分析報告
- 二零二五年度違約民事起訴狀合同起草技巧與法律適用3篇
- 2024-2025學年新教材高中數(shù)學第十章概率單元質量評估含解析新人教A版必修第二冊
- 2025年度文化旅游項目招投標與合同管理規(guī)范解讀3篇
- 2024金融行業(yè)拓展訓練合同
- 2025年度新能源居間服務合同范本英文版3篇
- 二零二五年度留守兒童特殊教育需求與個性化支持服務合同4篇
- 2025年度高科技企業(yè)派遣研發(fā)人員合同范本
- 2025版高性能鋁合金模板制造與租賃服務合同詳盡條款全文4篇
- 2025年度家庭經(jīng)濟困難子女撫養(yǎng)費減免專項合同
- 長亭送別完整版本
- 《鐵路軌道維護》課件-更換道岔尖軌作業(yè)
- 股份代持協(xié)議書簡版wps
- 職業(yè)學校視頻監(jiān)控存儲系統(tǒng)解決方案
- 《銷售心理學培訓》課件
- 智能養(yǎng)老院視頻監(jiān)控技術方案
- 2024年安徽省公務員錄用考試《行測》真題及解析
- 你比我猜題庫課件
- 豐順縣鄉(xiāng)鎮(zhèn)集中式飲用水水源地基礎狀況調查和風險評估報告
- 無人駕駛航空器安全操作理論復習測試附答案
- 2024年山東省青島市中考語文試卷(附答案)
評論
0/150
提交評論