四川雙流棠湖中學2023年高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第1頁
四川雙流棠湖中學2023年高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第2頁
四川雙流棠湖中學2023年高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第3頁
四川雙流棠湖中學2023年高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第4頁
四川雙流棠湖中學2023年高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

四川雙流棠湖中學2023年高二數(shù)學第一學期期末聯(lián)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖所示,已知是橢圓的左、右焦點,為橢圓的上頂點,在軸上,,且是的中點,為坐標原點,若點到直線的距離為3,則橢圓的方程為()A B.C. D.2.在等差數(shù)列中,,,則使數(shù)列的前n項和成立的最大正整數(shù)n=()A.2021 B.2022C.4041 D.40423.復數(shù)的虛部為()A. B.C. D.4.若拋物線的焦點為,則其標準方程為()A. B.C. D.5.在四面體中,,,,且,,則等于()A. B.C. D.6.在△ABC中,角A,B,C所對的邊分別是a,b,c,若c=1,B=45°,cosA=,則b等于()A. B.C. D.7.在等差數(shù)列中,,,則數(shù)列的公差為()A.1 B.2C.3 D.48.五行學說是中華民族創(chuàng)造的哲學思想.古代先民認為,天下萬物皆由五種元素組成,分別是金、木、水、火、土,彼此之間存在如圖所示的相生相克關系.若從金、木、水、火、土五種元素中任取兩種,則這兩種元素恰是相生關系的概率是()A. B.C. D.9.已知,為橢圓的左、右焦點,P為橢圓上一點,若,則P點的橫坐標為()A. B.C.4 D.910.某商場有四類食品,其中糧食類、植物油類、動物性食品類以及果蔬類分別有40種、10種、30種、20種,現(xiàn)從中抽取一個容量為20的樣本進行食品安全檢測.若采用分層抽樣的方法抽取樣本,則抽取的植物油類與果蔬類食品種數(shù)之和是()A.4 B.5C.6 D.711.如圖,橢圓的右焦點為,過與軸垂直的直線交橢圓于第一象限的點,點關于坐標原點的對稱點為,且,,則橢圓方程為()A. B.C. D.12.已知橢圓的長軸長為10,焦距為8,則該橢圓的短軸長等于()A.3 B.6C.8 D.12二、填空題:本題共4小題,每小題5分,共20分。13.已知直線與之間的距離為,則__________14.若,若,則______15.點到直線的距離為________.16.若,且,則_____________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)“中山橋”是位于蘭州市中心,橫跨黃河之上的一座百年老橋,如圖①,橋上有五個拱形橋架緊密相連,每個橋架的內(nèi)部有一個水平橫梁和八個與橫梁垂直的立柱,氣勢宏偉,素有“天下黃河第一橋”之稱.如圖②,一個拱形橋架可以近似看作是由等腰梯形和其上方的拋物線(部分)組成,建立如圖所示的平面直角坐標系,已知,,,,立柱.(1)求立柱及橫梁的長;(2)求拋物線的方程和橋梁的拱高.18.(12分)已知的展開式中,第4項的系數(shù)與倒數(shù)第4項的系數(shù)之比為.(1)求m的值;(2)求展開式中所有項的系數(shù)和與二項式系數(shù)和.19.(12分)橢圓C:的左右焦點分別為,,P為橢圓C上一點.(1)當P為橢圓C的上頂點時,求的余弦值;(2)直線與橢圓C交于A,B,若,求k20.(12分)已知橢圓:的長軸長是短軸長的倍,且經(jīng)過點.(1)求的標準方程;(2)的右頂點為,過右焦點的直線與交于不同的兩點,,求面積的最大值.21.(12分)已知公差不為的等差數(shù)列的首項,且、、成等比數(shù)列.(1)求數(shù)列的通項公式;(2)設,,是數(shù)列的前項和,求使成立的最大的正整數(shù).22.(10分)“雙十一”已經(jīng)成為網(wǎng)民們的網(wǎng)購狂歡節(jié),某電子商務平臺對某市的網(wǎng)民在今年“雙十一”的網(wǎng)購情況進行摸底調(diào)查,用隨機抽樣的方法抽取了100人,其消費金額(百元)的頻率分布直方圖如圖1所示:(1)利用圖1,求網(wǎng)民消費金額的平均值和中位數(shù);(2)把下表中空格里的數(shù)填上,能否有的把握認為網(wǎng)購消費與性別有關.男女合計30合計45附表:P(χ2≥k0)0.100.050.012.7063.8416.635參考公式:χ2=.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由題設可得,直線的方程為,點線距離公式表示到直線的距離,又聯(lián)立解得即可得出答案.【詳解】且,則△是等邊三角形,設,則①,∴直線方程為,即,∴到直線的距離為②,又③,聯(lián)立①②③,解得,,故橢圓方程為.故選:D.2、C【解析】根據(jù)等差數(shù)列的性質(zhì)易得,,再應用等差數(shù)列前n項和公式及等差中項、下標和的性質(zhì)可得、,即可確定答案.【詳解】因為是等差數(shù)列且,,所以,,.故選:C.3、D【解析】直接根據(jù).復數(shù)的乘法運算結(jié)合復數(shù)虛部的定義即可得出答案【詳解】解:,所以復數(shù)的虛部為.故選:D.4、D【解析】由題意設出拋物線的標準方程,再利用焦點為建立,解方程即可.【詳解】由題意,設拋物線標準方程為,所以,解得,所以拋物線標準方程為.故選:D5、B【解析】根據(jù)空間向量的線性運算即可求解.【詳解】解:由題知,故選:B.6、C【解析】先由cosA的值求出,進而求出,用正弦定理求出b的值.【詳解】因為cosA=,所以,所以由正弦定理:,得:.故選:C7、B【解析】將已知條件轉(zhuǎn)化為的形式,由此求得.【詳解】在等差數(shù)列中,設公差為d,由,,得,解得.故選:B8、C【解析】先計算從金、木、水、火、土五種元素中任取兩種的所有基本事件數(shù),再計算其中兩種元素恰是相生關系的基本事件數(shù),利用古典概型概率公式,即得解【詳解】由題意,從金、木、水、火、土五種元素中任取兩種,共有(金,木),(金,水),(金,火),(金,土),(木,水),(木,火),(木土),(水,火),(水,土),(火,土),共10個基本事件,其中兩種元素恰是相生關系包含(金,木),(木,土),(土,水),(水,火)(火,金)共5個基本事件,所以所求概率.故選:C9、B【解析】設,,根據(jù)向量的數(shù)量積得到,與橢圓方程聯(lián)立,即可得到答案;【詳解】設,,,與橢圓聯(lián)立,解得:,故選:B10、C【解析】按照分層抽樣的定義進行抽取.【詳解】按照分層抽樣的定義有,糧食類:植物油類:動物性食品類:果蔬類=4:1:3:2,抽20個出來,則糧食類8個,植物油類2個,動物性食品類6個,果蔬類4個,則抽取的植物油類與果蔬類食品種數(shù)之和是6個.故選:C.11、C【解析】連結(jié),設,則,,由可求出,進而可求出,得出橢圓方程.【詳解】由題意設橢圓的方程:,設左焦點為,連結(jié),由橢圓的對稱性易得四邊形為平行四邊形,由得,又,設,則,,又,解得,又由,,解得,,,則橢圓的方程為.故選:C.【點睛】關鍵點睛:本題考查了橢圓的標準方程求解及橢圓的簡單幾何性質(zhì),在求解橢圓標準方程時,關鍵是求解基本量,,.12、B【解析】根據(jù)橢圓中的關系即可求解.【詳解】橢圓的長軸長為10,焦距為8,所以,,可得,,所以,可得,所以該橢圓的短軸長,故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、或##或【解析】利用平行直線間距離公式構(gòu)造方程求解即可.【詳解】方程可化為:,由平行直線間距離公式得:,解得:或.故答案為:或.14、2【解析】首先利用二項展開式的通項公式,求,再利用賦值法求系數(shù)的和以及【詳解】展開式的通項為,令,則,即,故,令,得.又,所以故故答案為:15、【解析】利用點到直線的距離公式即可得出【詳解】利用點到直線的距離可得:故答案為:16、【解析】由,可得,,,從而利用換底公式及對數(shù)的運算性質(zhì)即可求解.【詳解】解:因為,所以,,,又,所以,所以,所以,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),(2),【解析】(1)根據(jù)梯形的幾何性質(zhì),即可求解;(2)表示出M,N的坐標,代入拋物線方程中,結(jié)合條件解得p值,繼而求得拱高.【小問1詳解】由題意,知,因為ABFM是等腰梯形,由對稱性知:,所以,【小問2詳解】由(1)知,所以點M的橫坐標為-18,則N的橫坐標為-(18-5)=-13.設點M,N的縱坐標分別為y1,y2,由圖形,知設拋物線的方程為,,兩式相減,得2p(y2-y1)=182-132=155,解得:2p=100故拋物線的方程為x2=-100y.因此,當x=-18時,所以橋梁的拱高OH=3.24+4=7.24m.18、(1)(2)所有項的系數(shù)和為,二項式系數(shù)和為【解析】(1)寫出展開式的通項,求出其第4項系數(shù)和倒數(shù)第4項系數(shù),列出方程即可求出m的值;(2)令x=1即可求所有展開項系數(shù)之和,二項式系數(shù)之和為2m.【小問1詳解】展開式的通項為:,∴展開式中第4項的系數(shù)為,倒數(shù)第4項的系數(shù)為,∴,即.【小問2詳解】令可得展開式中所有項的系數(shù)和為,展開式中所有項的二項式系數(shù)和為.19、(1)(2)【解析】(1)利用余弦定理可求頂角的余弦值.(2)聯(lián)立直線方程和橢圓方程,消元后利用韋達定理結(jié)合弦長公式可求的值.【小問1詳解】當為橢圓的上頂點時,,在中,由余弦定理知.【小問2詳解】設,,將直線與橢圓:聯(lián)立得:,因為直線過焦點,故恒成立,又,由弦長公式得,化簡整理得:,解得.20、(1);(2)【解析】(1)利用已知條件,結(jié)合橢圓方程求出,即可得到橢圓方程(2)設出直線方程,聯(lián)立橢圓與直線方程,利用韋達定理,弦長公式,列出三角形的面積,再利用基本不等式轉(zhuǎn)化求解即可【詳解】(1)解:由題意解得,,所以橢圓的標準方程為(2)點,右焦點,由題意知直線的斜率不為0,故設的方程為,,,聯(lián)立方程得消去,整理得,∴,,,,當且僅當時等號成立,此時:,所以面積的最大值為【點睛】本題考查橢圓的性質(zhì)和方程的求法,考查聯(lián)立直線方程和橢圓方程消去未知數(shù),運用韋達定理化簡整理和運算能力,屬于中檔題21、(1)(2)【解析】(1)設等差數(shù)列的公差為,根據(jù)已知條件可得出關于實數(shù)的等式,結(jié)合可求得的值,由此可得出數(shù)列的通項公式;(2)利用裂項求和法求出,解不等式即可得出結(jié)果.【小問1詳解】解:設等差數(shù)列公差為,則,由題意可得,即,整理得,,解得,故.【小問2詳解】解:,所以,,由得,可得,所以,滿足成立的最大的正整數(shù)的值為.22、(1),(2)列聯(lián)表見解析,沒

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論