天津南開(kāi)中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)試題含解析_第1頁(yè)
天津南開(kāi)中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)試題含解析_第2頁(yè)
天津南開(kāi)中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)試題含解析_第3頁(yè)
天津南開(kāi)中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)試題含解析_第4頁(yè)
天津南開(kāi)中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

天津南開(kāi)中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在平面幾何中,將完全覆蓋某平面圖形且直徑最小的圓,稱為該平面圖形的最小覆蓋圓.如線段的最小覆蓋圓就是以該線段為直徑的圓,銳角三角形的最小覆蓋圓就是該三角形的外接圓.若,,,則的最小覆蓋圓的半徑為()A. B.C. D.2.已知是函數(shù)的導(dǎo)函數(shù),則()A. B.C. D.3.已知對(duì)稱軸為坐標(biāo)軸的雙曲線的兩漸近線方程為,若雙曲線上有一點(diǎn),使,則雙曲線的焦點(diǎn)()A.在軸上 B.在軸上C.當(dāng)時(shí)在軸上 D.當(dāng)時(shí)在軸上4.已知等比數(shù)列滿足,,則數(shù)列前6項(xiàng)的和()A.510 B.126C.256 D.5125.圓的圓心坐標(biāo)與半徑分別是()A. B.C. D.6.如圖,已知正方體,點(diǎn)P是棱中點(diǎn),設(shè)直線為a,直線為b.對(duì)于下列兩個(gè)命題:①過(guò)點(diǎn)P有且只有一條直線l與a、b都相交;②過(guò)點(diǎn)P有且只有兩條直線l與a、b都成角.以下判斷正確的是()A.①為真命題,②為真命題 B.①為真命題,②為假命題C.①為假命題,②為真命題 D.①為假命題,②為假命題7.一質(zhì)點(diǎn)的運(yùn)動(dòng)方程為(位移單位:m,時(shí)間單位:s),則該質(zhì)點(diǎn)在時(shí)的瞬時(shí)速度為()A.4 B.12C.15 D.218.已知方程表示焦點(diǎn)在軸上的橢圓,則實(shí)數(shù)的取值范圍是()A. B.C. D.9.若函數(shù),(其中,)的最小正周期是,且,則()A. B.C. D.10.已知圓過(guò)點(diǎn),,且圓心在軸上,則圓的方程是()A. B.C. D.11.為迎接2022年冬奧會(huì),某校在體育冰球課上加強(qiáng)冰球射門(mén)訓(xùn)練,現(xiàn)從甲、乙兩隊(duì)中各選出5名球員,并分別將他們依次編號(hào)為1,2,3,4,5進(jìn)行射門(mén)訓(xùn)練,他們的進(jìn)球次數(shù)如折線圖所示,則在這次訓(xùn)練中以下說(shuō)法正確的是()A.甲隊(duì)球員進(jìn)球的中位數(shù)比乙隊(duì)大 B.乙隊(duì)球員進(jìn)球的中位數(shù)比甲隊(duì)大C.乙隊(duì)球員進(jìn)球水平比甲隊(duì)穩(wěn)定 D.甲隊(duì)球員進(jìn)球數(shù)的極差比乙隊(duì)小12.已知,,2成等差數(shù)列,則在平面直角坐標(biāo)系中,點(diǎn)M(x,y)的軌跡為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,且,則_____________14.若圓心坐標(biāo)為圓被直線截得的弦長(zhǎng)為,則圓的半徑為_(kāi)_____.15.狄利克雷是十九世紀(jì)德國(guó)杰出的數(shù)學(xué)家,對(duì)數(shù)論、數(shù)學(xué)分析和數(shù)學(xué)物理有突出貢獻(xiàn).狄利克雷曾提出了“狄利克雷函數(shù)”.若,根據(jù)“狄利克雷函數(shù)”可求___________.16.直線l過(guò)拋物線的焦點(diǎn)F,且l與該拋物線交于不同的兩點(diǎn),.若,則弦AB的長(zhǎng)是____三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在△ABC中,角A,B,C所對(duì)的邊為a,b,c,其中,,且(1)求角B的值;(2)若,判斷△ABC的形狀18.(12分)已知函數(shù)(1)求函數(shù)的圖象在點(diǎn)處的切線方程;(2)求函數(shù)的極值19.(12分)已知等比數(shù)列滿足(1)求的通項(xiàng)公式;(2)記的前n項(xiàng)和為,證明:,,成等差數(shù)列20.(12分)一位父親在孩子出生后,每月給小孩測(cè)量一次身高,得到前7個(gè)月的數(shù)據(jù)如下表所示.月齡1234567身高(單位:厘米)52566063656870(1)求小孩前7個(gè)月的平均身高;(2)求出身高y關(guān)于月齡x的回歸直線方程(計(jì)算結(jié)果精確到整數(shù)部分);(3)利用(2)的結(jié)論預(yù)測(cè)一下8個(gè)月的時(shí)候小孩的身高參考公式:21.(12分)如圖,在空間四邊形中,分別是的中點(diǎn),分別是上的點(diǎn),滿足.(1)求證:四點(diǎn)共面;(2)設(shè)與交于點(diǎn),求證:三點(diǎn)共線.22.(10分)已知雙曲線的左,右焦點(diǎn)為,離心率為.(1)求雙曲線C的漸近線方程;(2)過(guò)作斜率為k的直線l分別交雙曲線的兩條漸近線于A,B兩點(diǎn),若,求k的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)新定義只需求銳角三角形外接圓的方程即可得解.【詳解】,,,為銳角三角形,的外接圓就是它的最小覆蓋圓,設(shè)外接圓方程為,則解得的最小覆蓋圓方程為,即,的最小覆蓋圓的半徑為.故選:C2、B【解析】求出,代值計(jì)算可得的值.【詳解】因?yàn)?,則,因此,.故選:B.3、B【解析】設(shè)出雙曲線的一般方程,利用題設(shè)不等式,令二者平方,整理求得的,進(jìn)而可判斷出焦點(diǎn)的位置【詳解】漸近線方程為,,平方,兩邊除,,,雙曲線的焦點(diǎn)在軸上.故選B.【點(diǎn)睛】本題考查已知雙曲線的漸近線方程求雙曲線的方程,考查對(duì)雙曲線標(biāo)準(zhǔn)方程的理解與運(yùn)用,求解時(shí)要注意焦點(diǎn)落在軸或軸的特點(diǎn),考查學(xué)生分析問(wèn)題和解決問(wèn)題的能力4、B【解析】設(shè)等比數(shù)列的公比為,由題設(shè)條件,求得,再結(jié)合等比數(shù)列的求和公式,即可求解.【詳解】設(shè)等比數(shù)列的公比為,因?yàn)?,,可得,解得,所以?shù)列前6項(xiàng)的和.故選:B.【點(diǎn)睛】本題主要考查了等比數(shù)列的通項(xiàng)公式,以及等比數(shù)列的前項(xiàng)和公式的應(yīng)用,其中解答中熟記等比數(shù)列的通項(xiàng)公式和求和公式,準(zhǔn)確計(jì)算是解答的關(guān)鍵,著重考查推理與運(yùn)算能力.5、C【解析】將圓的一般方程化為標(biāo)準(zhǔn)方程,即可得答案.【詳解】由題可知,圓的標(biāo)準(zhǔn)方程為,所以圓心為,半徑為3,故選.6、A【解析】①由正方形的性質(zhì),可以延伸正方形,再利用兩條平行線確定一個(gè)平面即可;②一組鄰邊與對(duì)角面夾角相等,在平面內(nèi)繞P轉(zhuǎn)動(dòng),可以得到二條直線與a、b的夾角都等于.【詳解】如下圖所示,在側(cè)面正方形和再延伸一個(gè)正方形和,則平面和在同一個(gè)平面內(nèi),所以過(guò)點(diǎn)P,有且只有一條直線l,即與a、b相交,故①為真命題;取中點(diǎn)N,連PN,由于a、b為異面直線,a、b的夾角等于與b的夾角.由于平面,平面,,所以平面,所以與與b的夾角都為.又因?yàn)槠矫妫耘c與b的夾角都為,而,所以過(guò)點(diǎn)P,在平面內(nèi)存在一條直線,使得與與b的夾角都為,同理可得,過(guò)點(diǎn)P,在平面內(nèi)存在一條直線,使得與與的夾角都為;故②為真命題.故選:A7、B【解析】由瞬時(shí)變化率的定義,代入公式求解計(jì)算.【詳解】由題意,該質(zhì)點(diǎn)在時(shí)的瞬時(shí)速度為.故選:B8、D【解析】根據(jù)已知條件可得出關(guān)于實(shí)數(shù)的不等式組,由此可解得實(shí)數(shù)的取值范圍.【詳解】因?yàn)榉匠瘫硎窘裹c(diǎn)在軸上的橢圓,則,解得.故選:D.9、B【解析】利用余弦型函數(shù)的周期公式可求得的值,由結(jié)合的取值范圍可求得的值.【詳解】由已知可得,且,因此,.故選:B.10、B【解析】根據(jù)圓心在軸上,設(shè)出圓的方程,把點(diǎn),的坐標(biāo)代入圓的方程即可求出答案.【詳解】因?yàn)閳A的圓心在軸上,所以設(shè)圓的方程為,因?yàn)辄c(diǎn),在圓上,所以,解得,所以圓的方程是.故選:B.11、C【解析】根據(jù)折線圖,求出甲乙中位數(shù)、平均數(shù)及方差、極差,即可判斷各選項(xiàng)的正誤.【詳解】由題圖,甲隊(duì)數(shù)據(jù)從小到大排序?yàn)?,乙?duì)數(shù)據(jù)從小到大排序?yàn)?,所以甲乙兩?duì)的平均數(shù)都為5,甲、乙進(jìn)球中位數(shù)相同都為5,A、B錯(cuò)誤;甲隊(duì)方差為,乙隊(duì)方差為,即,故乙隊(duì)球員進(jìn)球水平比甲隊(duì)穩(wěn)定,C正確.甲隊(duì)極差為6,乙隊(duì)極差為4,故甲隊(duì)極差比乙隊(duì)大,D錯(cuò)誤.故選:C12、A【解析】已知,,2成等差數(shù)列,得到,化簡(jiǎn)得到【詳解】已知,,2成等差數(shù)列,得到,化簡(jiǎn)得到可知是焦點(diǎn)在x軸上的拋物線的一支.故答案為A.【點(diǎn)睛】這個(gè)題目考查的是對(duì)數(shù)的運(yùn)算以及化簡(jiǎn)公式的應(yīng)用,也涉及到了軌跡的問(wèn)題,求點(diǎn)的軌跡,通常是求誰(shuí)設(shè)誰(shuí),再根據(jù)題干將等量關(guān)系轉(zhuǎn)化為代數(shù)關(guān)系,從而列出方程,化簡(jiǎn)即可.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】由共線向量得,解方程即可.【詳解】因?yàn)?,所以,解?故答案為:214、【解析】利用垂徑定理計(jì)算即可.【詳解】設(shè)圓的半徑為,則,得.故答案為:.15、1【解析】由“狄利克雷函數(shù)”解析式,先求出,再根據(jù)指數(shù)函數(shù)的解析式求即可.【詳解】由題設(shè),,則.故答案:116、4【解析】由題意得,再結(jié)合拋物線的定義即可求解.【詳解】由題意得,由拋物線的定義知:,故答案為:4.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)等邊三角形【解析】(1)把化為,然后由正弦定理化邊為角,利用兩角和的正弦公式、誘導(dǎo)公式可求得;(2)由余弦定理及三角形面積公式可得,從而得出三角形為等邊三角形【小問(wèn)1詳解】∵,∴由正弦定理得,∵,∴,∴,又,所以,可得;【小問(wèn)2詳解】由(1)知余弦定理,①,②由①②可得:,又,所以,所以該三角形為等邊三角形18、(1)(2)極大值為12,極小值-15【解析】(1)利用導(dǎo)數(shù)的幾何意義求解即可.(2)利用導(dǎo)數(shù)求解極值即可.【小問(wèn)1詳解】,,切點(diǎn)為,故切線方程為,即;【小問(wèn)2詳解】令,得或列表:-12+0-0+單調(diào)遞增12單調(diào)遞減-15單調(diào)遞增函數(shù)的極大值為,函數(shù)的極小值為.19、(1)(2)證明見(jiàn)解析【解析】(1)設(shè)等比數(shù)列的公比為,根據(jù),求得的值,即可求得數(shù)列的通項(xiàng)公式;(2)由等比數(shù)列的求和公式求得,得到,,化簡(jiǎn)得到,即可求解【小問(wèn)1詳解】解:設(shè)等比數(shù)列的公比為,因?yàn)?,所以,解得,所以,所以?shù)列的通項(xiàng)公式【小問(wèn)2詳解】解:由(1)可得,,,所以,所以,即,,成等差數(shù)列20、(1)62;(2);(3)74.【解析】(1)直接利用平均數(shù)的計(jì)算公式即可求解;(2)套公式求出b、a,求出回歸方程;(3)把x=8代入回歸方程即可求出.【小問(wèn)1詳解】小孩前7個(gè)月的平均身高為.【小問(wèn)2詳解】(2)設(shè)回歸直線方程是.由題中的數(shù)據(jù)可知.,..計(jì)算結(jié)果精確到整數(shù)部分,所以,于是,所以身高y關(guān)于月齡x的回歸直線方程為.【小問(wèn)3詳解】由(2)知,.當(dāng)x=8時(shí),y=3×8+50=74,所以預(yù)測(cè)8個(gè)月的時(shí)候小孩的身高為74厘米.21、(1)證明見(jiàn)解析(2)證明見(jiàn)解析【解析】【小問(wèn)1詳解】連接AC,分別是的中點(diǎn),.在中,,所以四點(diǎn)共面.【小問(wèn)2詳解】,所以,又平面

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論