




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
天津市塘沽第一中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末考試模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知復(fù)數(shù)滿足(其中為虛數(shù)單位),則復(fù)數(shù)的虛部為()A. B.C. D.2.直線的方向向量為()A. B.C. D.3.直線的斜率是方程的兩根,則與的位置關(guān)系是()A.平行 B.重合C.相交但不垂直 D.垂直4.已知點(diǎn)F為拋物線C:的焦點(diǎn),點(diǎn),若點(diǎn)Р為拋物線C上的動點(diǎn),當(dāng)取得最大值時(shí),點(diǎn)P恰好在以F,為焦點(diǎn)的橢圓上,則該橢圓的離心率為()A. B.C. D.5.雙曲線的焦點(diǎn)到漸近線的距離為()A.1 B.2C. D.6.若,則下列不等式不能成立是()A. B.C. D.7.若雙曲線與橢圓有公共焦點(diǎn),且離心率,則雙曲線的標(biāo)準(zhǔn)方程為()A. B.C. D.8.曲線在點(diǎn)處的切線方程是A. B.C. D.9.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.即不充分也不必要條件10.圓的圓心坐標(biāo)和半徑分別為()A.和 B.和C.和 D.和11.礦山爆破時(shí),在爆破點(diǎn)處炸開的礦石的運(yùn)動軌跡可看作是不同的拋物線,根據(jù)地質(zhì)、炸藥等因素可以算出這些拋物線的范圍,這個范圍的邊界可以看作一條拋物線,叫“安全拋物線”,如圖所示.已知某次礦山爆破時(shí)的安全拋物線的焦點(diǎn)為,則這次爆破時(shí),礦石落點(diǎn)的最遠(yuǎn)處到點(diǎn)的距離為()A. B.2C. D.12.從1,2,3,4,5中隨機(jī)抽取三個數(shù),則這三個數(shù)能成為一個三角形三邊長的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.圓關(guān)于直線對稱的圓的方程為______14.某校周五的課程表設(shè)計(jì)中,要求安排8節(jié)課(上午4節(jié)、下午4節(jié)),分別安排語文、數(shù)學(xué)、英語、物理、化學(xué)、生物、政治、歷史各一節(jié),其中生物只能安排在第一節(jié)或最后一節(jié),數(shù)學(xué)和英語在安排時(shí)必須相鄰(注:上午的最后一節(jié)與下午的第一節(jié)不記作相鄰),則周五的課程順序的編排方法共有______15.在空間直角坐標(biāo)系中,已知,,,,則___________.16.甲、乙兩名學(xué)生通過某次聽力測試的概率分別為和,且是否通過聽力測試相互獨(dú)立,兩人同時(shí)參加測試,其中有且只有一人能通過的概率是__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在復(fù)數(shù)集C內(nèi)方程有六個根分別為(1)解出這六個根;(2)在復(fù)平面內(nèi),這六個根對應(yīng)的點(diǎn)分別為A,B,C,D,E,F(xiàn);求多邊形ABCDEF的面積18.(12分)已知圓C:(1)若點(diǎn),求過點(diǎn)的圓的切線方程;(2)若點(diǎn)為圓的弦的中點(diǎn),求直線的方程19.(12分)如圖,在多面體中,和均為等邊三角形,D是的中點(diǎn),.(1)證明:;(2)若,求多面體的體積.20.(12分)如圖1,在中,,,,分別是,邊上的中點(diǎn),將沿折起到的位置,使,如圖2(1)求點(diǎn)到平面的距離;(2)在線段上是否存在一點(diǎn),使得平面與平面夾角的余弦值為.若存在,求出長;若不存在,請說明理由21.(12分)已知函數(shù),滿足,已知點(diǎn)是曲線上任意一點(diǎn),曲線在處的切線為.(1)求切線的傾斜角的取值范圍;(2)若過點(diǎn)可作曲線的三條切線,求實(shí)數(shù)的取值范圍.22.(10分)如圖,在直三棱柱中,,E、F分別是、的中點(diǎn)(1)求證:平面;(2)求證:平面
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由題目條件可得,即,然后利用復(fù)數(shù)的運(yùn)算法則化簡.【詳解】因?yàn)椋?,則故復(fù)數(shù)的虛部為.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的相關(guān)概念及復(fù)數(shù)的乘除運(yùn)算,按照復(fù)數(shù)的運(yùn)算法則化簡計(jì)算即可,較簡單.2、D【解析】根據(jù)直線方程,求得斜率k,分析即可得直線的方向向量.【詳解】直線變形可得,所以直線的斜率,所以向量為直線的一個方向向量,因?yàn)?,所以向量為直線的方向向量,故選:D3、C【解析】由韋達(dá)定理可得方程的兩根之積為,從而可知直線、的斜率之積為,進(jìn)而可判斷兩直線的位置關(guān)系【詳解】設(shè)方程的兩根為、,則直線、的斜率,故與相交但不垂直故選:C4、D【解析】過點(diǎn)P引拋物線準(zhǔn)線的垂線,交準(zhǔn)線于D,根據(jù)拋物線的定義可知,記,根據(jù)題意,當(dāng)最小,即直線與拋物線相切時(shí)滿足題意,進(jìn)而解出此時(shí)P的坐標(biāo),解得答案即可.【詳解】如圖,易知點(diǎn)在拋物線C的準(zhǔn)線上,作PD垂直于準(zhǔn)線,且與準(zhǔn)線交于點(diǎn)D,記,則.由拋物線定義可知,.由圖可知,當(dāng)取得最大值時(shí),最小,此時(shí)直線與拋物線相切,設(shè)切線方程為,代入拋物線方程并化簡得:,,方程化為:,代入拋物線方程解得:,即,則,.于是,橢圓的長軸長,半焦距,所以橢圓的離心率.故選:D.5、A【解析】分別求出雙曲線的焦點(diǎn)坐標(biāo)和漸近線方程,利用點(diǎn)到直線的距離公式求出結(jié)果【詳解】雙曲線中,焦點(diǎn)坐標(biāo)為漸近線方程為:∴雙曲線的焦點(diǎn)到漸近線的距離故選:A6、C【解析】利用不等式的性質(zhì)可判斷ABD,利用賦值法即可判斷C,如.【詳解】解:因?yàn)?,所以,所以,,,故ABD正確;對于C,若,則,故C錯誤.故選:C.7、A【解析】首先求出橢圓的焦點(diǎn)坐標(biāo),然后根據(jù)可得雙曲線方程中的的值,然后可得答案.【詳解】橢圓焦點(diǎn)坐標(biāo)為所以雙曲線的焦點(diǎn)在軸上,,因?yàn)?,所以,所以雙曲線的標(biāo)準(zhǔn)方程為故選:A8、D【解析】先求導(dǎo)數(shù),得切線的斜率,再根據(jù)點(diǎn)斜式得切線方程.【詳解】,選D.點(diǎn)睛】本題考查導(dǎo)數(shù)幾何意義以及直線點(diǎn)斜式方程,考查基本求解能力,屬基礎(chǔ)題.9、D【解析】根據(jù)充分條件、必要條件的判定方法,結(jié)合不等式的性質(zhì),即可求解.【詳解】由,可得,即,當(dāng)時(shí),,但的符號不確定,所以充分性不成立;反之當(dāng)時(shí),也不一定成立,所以必要性不成立,所以是的即不充分也不必要條件.故選:D.10、C【解析】利用圓的一般方程的圓心和半徑公式,即得解【詳解】可化為,由圓心為,半徑,易知圓心的坐標(biāo)為,半徑為.故選:C11、D【解析】根據(jù)給定條件求出拋物線的頂點(diǎn),結(jié)合拋物線的性質(zhì)求出p值即可計(jì)算作答.【詳解】依題意,拋物線的頂點(diǎn)坐標(biāo)為,則拋物線的頂點(diǎn)到焦點(diǎn)的距離為,p>0,解得,于是得拋物線的方程為,由得,,即拋物線與軸的交點(diǎn)坐標(biāo)為,因此,,所以礦石落點(diǎn)的最遠(yuǎn)處到點(diǎn)的距離為.故選:D12、C【解析】列舉出所有情況,然后根據(jù)兩邊之和大于第三邊數(shù)出能構(gòu)成三角形的情況,進(jìn)而得到答案.【詳解】5個數(shù)取3個數(shù)的所有情況如下:{1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5}共10種情況,而能構(gòu)成三角形的情況有{2,3,4;2,4,5;3,4,5}共3種情況,故所求概率.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出圓心關(guān)于直線對稱點(diǎn),從而求出對稱圓的方程.【詳解】圓心為,半徑為1,設(shè)關(guān)于對稱點(diǎn)為,則,解得:,故對稱點(diǎn)為,故圓關(guān)于直線對稱的圓的方程為.故答案為:14、2400種【解析】分三步,第一步:根據(jù)題意從第一個位置和最后一個位置選一個位置安排生物,第二步:將數(shù)學(xué)和英語捆綁排列,第三步:將剩下的5節(jié)課全排列,最后利用分步乘法計(jì)數(shù)原理求解.【詳解】分步排列,第一步:因?yàn)橛深}意知生物只能出現(xiàn)在第一節(jié)或最后一節(jié),所以從第一個位置和最后一個位置選一個位置安排生物,有(種)編排方法;第二步:因?yàn)閿?shù)學(xué)和英語在安排時(shí)必須相鄰,注意數(shù)學(xué)和英語之間還有一個排列,所以有(種)編排方法;第三步:剩下的5節(jié)課安排5科課程,有(種)編排方法根據(jù)分步乘法計(jì)數(shù)原理知共有(種)編排方法故答案為:2400種15、或##或【解析】根據(jù)向量平行時(shí)坐標(biāo)的關(guān)系和向量的模公式即可求解.【詳解】,且,設(shè),,解得,或.故答案為:或.16、##0.5【解析】分兩種情況,結(jié)合相互獨(dú)立事件公式即可求解.【詳解】記甲,乙通過聽力測試的分別為事件,則可得,兩人有且僅有一人通過為事件,故所求事件概率為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)原式可因式分解為,令,設(shè)可求解出的兩個虛根,同理可求解的兩個虛根,即得解;(2)六個點(diǎn)構(gòu)成的圖形為正六邊形,邊長為1,計(jì)算即可【小問1詳解】由題意,當(dāng)時(shí),設(shè)故,所以解得:,即當(dāng)時(shí),設(shè)故所以解得:,即故:【小問2詳解】六個根對應(yīng)的點(diǎn)分別為A,B,C,D,E,F(xiàn),其中在復(fù)平面中描出這六個點(diǎn)如圖所示:六個點(diǎn)構(gòu)成的圖形為正六邊形,邊長為1故18、(1)或(2)【解析】(1)求出圓的圓心與半徑,分過點(diǎn)的直線的斜率不存和存在兩種情況,利用圓心到直線距離等于半徑,即可求出切線方程;(2)根據(jù)圓心與弦中點(diǎn)的連線垂直線,可求出直線的斜率,進(jìn)而求出結(jié)果.【小問1詳解】解:由題意知圓心的坐標(biāo)為,半徑,當(dāng)過點(diǎn)的直線的斜率不存在時(shí),方程為由圓心到直線的距離知,此時(shí),直線與圓相切當(dāng)過點(diǎn)的直線的斜率存在時(shí),設(shè)方程為,即.由題意知,解得,∴方程為故過點(diǎn)的圓的切線方程為或【小問2詳解】解:∵圓心,,即,又,∴,則.19、(1)見詳解(1).(2)16【解析】(1)證線面垂直從而證線線垂直.(2)把面體看成兩個錐體,由已知線面垂直得高,并進(jìn)一步可求錐體底面邊長,從而得解.【小問1詳解】因?yàn)?,所以共面,連接、,因?yàn)楹途鶠榈冗吶切?,D是的中點(diǎn),所以,,,所以面平,平面,【小問2詳解】因?yàn)?,,四邊形是平行四邊形,和均為等邊三角形,D是的中點(diǎn),所以,,平行四邊形是正方形形,,.20、(1)(2)存在,【解析】(1)根據(jù)題意分別由已知條件計(jì)算出的面積和的面積,利用求解,(2)如圖建立空間直角坐標(biāo)系,設(shè),然后求出平面與平面的法向量,利用向量平夾角公式列方程可求得結(jié)果小問1詳解】在中,,因?yàn)?,分別是,邊上的中點(diǎn),所以∥,,所以,所以,因?yàn)?,所以平面,所以平面,因?yàn)槠矫?,所以,所以,因?yàn)槠矫?,平面,所以平面平面,因?yàn)椋?,因?yàn)?,所以是等邊三角形,取的中點(diǎn),連接,則,,因?yàn)槠矫嫫矫?,平面平面,平面,所以平面,中,,所以邊上的高為,所以,在梯形中,,設(shè)點(diǎn)到平面的距離為,因,所以,所以,得,所以點(diǎn)到平面的距離為【小問2詳解】由(1)可知平面,,所以以為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,設(shè),則,設(shè)平面的法向量為,則,令,則,設(shè)平面的法向量為,則,令,則,則平面與平面夾角的余弦值為,兩邊平方得,,解得或(舍去),所以,所以21、(1)(2)【解析】(1)根據(jù)題意求出值,求導(dǎo)后通過導(dǎo)數(shù)的值域求出斜率范圍,從而得到傾角范圍.(2)利用導(dǎo)數(shù)幾何意義得到過P點(diǎn)的切線方程,化簡后構(gòu)造m的函數(shù),求新函數(shù)的極大值極小值即可.【小問1詳解】因?yàn)椋瑒t,解得,所以,則,故,,,,,切線的傾斜角的的取值范圍是,,.小問2詳解】設(shè)曲線與過點(diǎn),的切線相切于點(diǎn),則切線的斜率為,所以切線方程為因?yàn)辄c(diǎn),在切線上,所以,即,由題意,該方程有三解設(shè),則,令,解得或,當(dāng)或時(shí),,當(dāng)時(shí),,所以在和上單調(diào)遞減
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)村壁爐修造方案(3篇)
- DB23-T2975-2021-消費(fèi)品召回風(fēng)險(xiǎn)評估-黑龍江省
- DB23-T2888-2021-楊樹人工造林間作北蒼術(shù)栽培技術(shù)規(guī)程-黑龍江省
- 公司總務(wù)后勤管理制度
- 廠內(nèi)小件物流管理制度
- 光伏公司績效管理制度
- 醫(yī)療機(jī)械設(shè)備管理制度
- 連排別墅重建方案(3篇)
- 會展比選方案(3篇)
- 公司檢修小組管理制度
- 2023年高考全國甲卷數(shù)學(xué)(理)試卷【含答案】
- 2023年安徽ACM省賽試題
- 2023深圳一模數(shù)學(xué)試卷及答案
- 初中八年級紅色文化課方志敏精神教案
- (完整版)METS醫(yī)護(hù)英語水平考試
- 車險(xiǎn)查勘定損中級培訓(xùn)水淹車處理指引及定損培訓(xùn)
- GB/T 25695-2010建筑施工機(jī)械與設(shè)備旋挖鉆機(jī)成孔施工通用規(guī)程
- 納米酶研究進(jìn)展
- 力平之獨(dú)特的血脂管理課件
- (完整版)土方回填專項(xiàng)施工方案
- 美容院衛(wèi)生管理制度(常用版)
評論
0/150
提交評論