新疆維吾爾自治區(qū)普通高中2024屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
新疆維吾爾自治區(qū)普通高中2024屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
新疆維吾爾自治區(qū)普通高中2024屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
新疆維吾爾自治區(qū)普通高中2024屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
新疆維吾爾自治區(qū)普通高中2024屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

新疆維吾爾自治區(qū)普通高中2024屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)變量,滿足約束條件則的最小值為()A.3 B.-3C.2 D.-22.在各項(xiàng)都為正數(shù)的數(shù)列中,首項(xiàng)為數(shù)列的前項(xiàng)和,且,則()A. B.C. D.3.如果一個矩形長與寬的比值為,那么稱該矩形為黃金矩形.如圖,已知是黃金矩形,,分別在邊,上,且也是黃金矩形.若在矩形內(nèi)任取一點(diǎn),則該點(diǎn)取自黃金矩形內(nèi)的概率為()A. B.C. D.4.曲線與曲線()的()A.長軸長相等 B.短軸長相等C.離心率相等 D.焦距相等5.若,則的最小值為()A.1 B.2C.3 D.46.在空間直角坐標(biāo)系中,已知點(diǎn)A(1,1,2),B(-3,1,-2),則線段AB的中點(diǎn)坐標(biāo)是()A.(-2,1,2) B.(-1,1,0)C.(-2,0,1) D.(-1,1,2)7.已知一質(zhì)點(diǎn)的運(yùn)動方程為,其中的單位為米,的單位為秒,則第1秒末的瞬時速度為()A. B.C. D.8.已知長方體中,,,則直線與所成角的余弦值是()A. B.C. D.9.圓的圓心坐標(biāo)和半徑分別為()A.和 B.和C.和 D.和10.已知,是橢圓C的兩個焦點(diǎn),P是C上的一點(diǎn),若以為直徑的圓過點(diǎn)P,且,則C的離心率為()A. B.C. D.11.已知,為雙曲線的左,右頂點(diǎn),點(diǎn)P在雙曲線C上,為等腰三角形,且頂角為,則雙曲線C的離心率為()A. B.C.2 D.12.已知是等比數(shù)列,則()A.數(shù)列是等差數(shù)列 B.數(shù)列是等比數(shù)列C.數(shù)列是等差數(shù)列 D.數(shù)列是等比數(shù)列二、填空題:本題共4小題,每小題5分,共20分。13.已知AB為圓O:的直徑,點(diǎn)P為橢圓上一動點(diǎn),則的最小值為______14.已知拋物線的焦點(diǎn)為F,O為坐標(biāo)原點(diǎn),M的準(zhǔn)線為l且與x軸相交于點(diǎn)B,A為M上的一點(diǎn),直線AO與直線l相交于C點(diǎn),若,,則M的標(biāo)準(zhǔn)方程為______________.15.直線與直線平行,則m的值是__________16.已知向量,,,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,AB是半圓O的直徑,C是半圓上一點(diǎn),M是PB的中點(diǎn),平面ABC,且,,.(1)求證:平面PAC;(2)求三棱錐M—ABC體積.18.(12分)如圖,點(diǎn)是曲線上的動點(diǎn)(點(diǎn)在軸左側(cè)),以點(diǎn)為頂點(diǎn)作等腰梯形,使點(diǎn)在此曲線上,點(diǎn)在軸上.設(shè),等腰梯的面積為.(1)寫出函數(shù)的解析式,并求出函數(shù)的定義域;(2)當(dāng)為何值時,等腰梯形的面積最大?求出最大面積.19.(12分)在如圖所示的幾何體中,四邊形ABCD為正方形,平面ABCD,,,.(1)求證:平面PAD;(2)求直線AB與平面PCE所成角的正弦值;20.(12分)如圖,PA⊥平面ABCD,四邊形ABCD是正方形,PA=AD=2,M、N分別是AB、PC的中點(diǎn)(1)求證:平面MND⊥平面PCD;(2)求點(diǎn)P到平面MND的距離21.(12分)在平面直角坐標(biāo)系中,點(diǎn),直線軸,垂足為H,,圓N過點(diǎn)O,與l的公共點(diǎn)的軌跡為(1)求的方程;(2)過M的直線與交于A,B兩點(diǎn),若,求22.(10分)某中學(xué)共有名學(xué)生,其中高一年級有名學(xué)生,為了解學(xué)生的睡眠情況,用分層抽樣的方法,在三個年級中抽取了名學(xué)生,依據(jù)每名學(xué)生的睡眠時間(單位:小時),繪制出了如圖所示的頻率分布直方圖.(1)求樣本中高一年級學(xué)生人數(shù)及圖中的值;(2)估計(jì)樣本數(shù)據(jù)的中位數(shù)(保留兩位小數(shù));(3)估計(jì)全校睡眠時間超過個小時的學(xué)生人數(shù).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】轉(zhuǎn)化為,則最小即直線在軸上的截距最大,作出不等式組表示的可行域,數(shù)形結(jié)合即得解【詳解】轉(zhuǎn)化為,則最小即直線在軸上的截距最大作出不等式組表示的可行域如圖中陰影部分所示,作出直線,平移該直線,當(dāng)直線經(jīng)過時,在軸上的截距最大,最小,此時,故選:D2、C【解析】當(dāng)時,,故可以得到,因?yàn)椋M(jìn)而得到,所以是等比數(shù)列,進(jìn)而求出【詳解】由,得,得,又?jǐn)?shù)列各項(xiàng)均為正數(shù),且,∴,∴,即∴數(shù)列是首項(xiàng),公比的等比數(shù)列,其前項(xiàng)和,得,故選:C.3、B【解析】由幾何概型的面積型,只需求小矩形的面積和大矩形面積之比.【詳解】由題意,不妨設(shè),則,又也是黃金矩形,則,又,解得,于是大矩形面積為:,小矩形的面積為,由幾何概型的面積型,概率為若在矩形內(nèi)任取一點(diǎn),則該點(diǎn)取自黃金矩形內(nèi)的概率為:.故選:B.4、D【解析】分別求出兩橢圓的長軸長、短軸長、離心率、焦距,即可判斷.【詳解】曲線表示焦點(diǎn)在軸上,長軸長為,短軸長為,離心率為,焦距為;曲線表示焦點(diǎn)在軸上,長軸長為,短軸長為,離心率為,焦距為.對照選項(xiàng)可知:焦距相等.故選:D.5、D【解析】由基本不等式求解即可.【詳解】,當(dāng)且僅當(dāng)時,取等號.即所求最小值.故選:D6、B【解析】利用中點(diǎn)坐標(biāo)公式直接求解【詳解】在空間直角坐標(biāo)系中,點(diǎn),1,,,1,,則線段的中點(diǎn)坐標(biāo)是,,,1,故選:B.7、C【解析】求出即得解.【詳解】解:由題意得,故質(zhì)點(diǎn)在第1秒末的瞬時速度為.故選:C8、C【解析】建立空間直角坐標(biāo)系,設(shè)直線與所成角為,由求解.【詳解】∵長方體中,,,∴分別以,,為,,軸建立如圖所示空間直角坐標(biāo)系,,則,,,,所以,,設(shè)直線與所成角為,則,∴直線和夾角余弦值是.故選:C.9、C【解析】利用圓的一般方程的圓心和半徑公式,即得解【詳解】可化為,由圓心為,半徑,易知圓心的坐標(biāo)為,半徑為.故選:C10、B【解析】根據(jù)題意,在中,設(shè),則,進(jìn)而根據(jù)橢圓定義得,進(jìn)而可得離心率.【詳解】在中,設(shè),則,又由橢圓定義可知則離心率,故選:B.【點(diǎn)睛】本題考查橢圓離心率的計(jì)算,考查運(yùn)算求解能力,是基礎(chǔ)題.本題解題的關(guān)鍵在于根據(jù)已知條件,結(jié)合橢圓的定義,在焦點(diǎn)三角形中根據(jù)邊角關(guān)系求解.11、A【解析】根據(jù)給定條件求出點(diǎn)P的坐標(biāo),再代入雙曲線方程計(jì)算作答.【詳解】由雙曲線對稱性不妨令點(diǎn)P在第一象限,過P作軸于B,如圖,因?yàn)榈妊切危翼斀菫?,則有,,有,于是得,即點(diǎn),因此,,解得,所以雙曲線C的離心率為.故選:A12、B【解析】取,可判斷AC選項(xiàng);利用等比數(shù)列的定義可判斷B選項(xiàng);取可判斷D選項(xiàng).【詳解】若,則、無意義,A錯C錯;設(shè)等比數(shù)列的公比為,則,(常數(shù)),故數(shù)列是等比數(shù)列,B對;取,則,數(shù)列為等比數(shù)列,因?yàn)?,,,且,所以,?shù)列不是等比數(shù)列,D錯.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】方法一:通過對稱性取特殊位置,設(shè)出P的坐標(biāo),利用向量的數(shù)量積轉(zhuǎn)化求解最小值即可方法二:利用向量的數(shù)量積,轉(zhuǎn)化為向量的和與差的平方,通過圓的特殊性,轉(zhuǎn)化求解即可【詳解】解:方法一:依據(jù)對稱性,不妨設(shè)直徑AB在x軸上,x,,,從而故答案為2方法二:,而,則答案2故答案為2【點(diǎn)睛】本題考查直線與圓的位置關(guān)系、橢圓方程的幾何性質(zhì)考查轉(zhuǎn)化思想以及計(jì)算能力14、【解析】先利用相似關(guān)系計(jì)算,求得直線OA的方程,再聯(lián)立方程求得,利用拋物線定義根據(jù)即得p值,即得結(jié)果.【詳解】因?yàn)?,,所以,則,如圖,,故,解得,所以,直線OA的斜率為,OA的方程,聯(lián)立直線OA與拋物線方程,解得,所以,故,則拋物線標(biāo)準(zhǔn)方程為.故答案為:.15、【解析】利用直線的平行條件即得.詳解】∵直線與直線平行,∴,∴.故答案為:.16、2【解析】由空間向量數(shù)量積的坐標(biāo)運(yùn)算可得答案.【詳解】因?yàn)?,,,所以?故答案為:2.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)2【解析】(1)依題意可得,再由平面,得到,即可證明平面;(2)連接,可證,即可得到平面,為三棱錐的高,再根據(jù)錐體的體積公式計(jì)算可得;【詳解】(1)證明:因?yàn)槭前雸A的直徑,所以.因?yàn)槠矫?,平面,所以,又因?yàn)槠矫?,平面,且所以平?(2)解:因?yàn)?,,所以?連接.因?yàn)?、分別是,的中點(diǎn),所以,.又平面.所以平面.因此為三棱錐的高.所以.【點(diǎn)睛】本題考查線面垂直的證明,錐體的體積的計(jì)算,屬于中檔題.18、(1);(2)當(dāng)時取到最大值,【解析】(1)設(shè)點(diǎn),則根據(jù)題意得,,故;(2)令,研究函數(shù)的單調(diào)性,進(jìn)而得的最值,進(jìn)而得的最大值.【詳解】解:(1)根據(jù)題意,設(shè)點(diǎn),由是曲線上的動點(diǎn)得:,由于橢圓與軸交點(diǎn)為,故,所以即:(2)結(jié)合(1),對兩邊平方得:,令,則,所以當(dāng)時,,當(dāng)時,,所以在區(qū)間單調(diào)遞增,在上單調(diào)遞減,所以在處取到最大值,,所以當(dāng)時,取到最大值,.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究實(shí)際問題,考查數(shù)學(xué)應(yīng)用能力與計(jì)算能力,是中檔題.19、(1)證明見詳解(2)【解析】(1)將線面平行轉(zhuǎn)化為面面平行,由已知易證;(2)延長相交與點(diǎn)F,利用等體積法求點(diǎn)A到平面PCE,然后由可得.【小問1詳解】四邊形ABCD為正方形平面PAD,平面PAD平面PAD同理,,平面PAD又平面,平面平面平面PAD平面平面PAD【小問2詳解】延長相交與點(diǎn)F,因?yàn)椋苑謩e為的中點(diǎn).記點(diǎn)到平面PCF為d,直線AB與平面PCE所成角為,則.易知,,,,因?yàn)槠矫鍭BCD,所以,所以因?yàn)?,所以由得:即,得所?2.20、(1)見解析;(2)【解析】(1)作出如圖所示空間直角坐標(biāo)系,根據(jù)題中數(shù)據(jù)可得、、的坐標(biāo),利用垂直向量數(shù)量積為零的方法算出平面、平面的法向量分別為,,和,1,,算出,可得,從而得出平面平面;(2)由(1)中求出的平面法向量,,與向量,2,,利用點(diǎn)到平面的距離公式加以計(jì)算即可得到點(diǎn)到平面的距離【詳解】(1)證明:平面,,、、兩兩互相垂直,如圖所示,分別以、、所在直線為軸、軸和軸建立空間直角坐標(biāo)系,則,0,,,0,,,2,,,2,,,0,,,0,,,1,,,1,,,1,,,2,設(shè),,是平面的一個法向量,可得,取,得,,,,是平面的一個法向量,同理可得,1,是平面的一個法向量,,,即平面的法向量與平面的法向量互相垂直,可得平面平面;(2)解:由(1)得,,是平面的一個法向量,,2,,得,點(diǎn)到平面的距離21、(1);(2).【解析】(1)設(shè)出圓N與l的公共點(diǎn)坐標(biāo),再探求出點(diǎn)N的坐標(biāo),并由圓的性質(zhì)列出方程化簡即得.(2)設(shè)出直線AB的方程,與的方程聯(lián)立,結(jié)合已知條件并借助韋達(dá)定理計(jì)算作答.【小問1詳解】設(shè)為圓N與l的公共點(diǎn),而直線軸,垂足為H,則,又,,于是得,因O,P在圓N上,即,則有,化簡整理得:,所以的方程為.【小問2詳解】顯然直線AB不垂直于y軸,設(shè)直線AB的方程為,,由消去x并整理得:,則,因?yàn)?,則點(diǎn)A到x軸距離是點(diǎn)B到x軸距離的2倍,即,由解得或,則有,因此有,所以.22、(1)樣本中高一年級學(xué)生的人數(shù)為,;(2);(3).

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論