版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
新疆庫(kù)爾勒第二師華山中學(xué)2024屆數(shù)學(xué)高二上期末監(jiān)測(cè)模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知點(diǎn)、為橢圓的左、右焦點(diǎn),若點(diǎn)為橢圓上一動(dòng)點(diǎn),則使得的點(diǎn)的個(gè)數(shù)為()A. B.C. D.不能確定2.命題“,使”的否定是()A.,有 B.,有C.,使 D.,使3.若正實(shí)數(shù)、滿足,且不等式有解,則實(shí)數(shù)取值范圍是()A.或 B.或C. D.4.正四棱錐中,,則直線與平面所成角的正弦值為A. B.C. D.5.為推動(dòng)黨史學(xué)習(xí)教育各項(xiàng)工作扎實(shí)開(kāi)展,營(yíng)造“學(xué)黨史、悟思想、辦實(shí)事、開(kāi)新局”的濃厚氛圍,某校黨委計(jì)劃將中心組學(xué)習(xí)、專(zhuān)題報(bào)告會(huì)、黨員活動(dòng)日、主題班會(huì)、主題團(tuán)日這五種活動(dòng)分5個(gè)階段安排,以推動(dòng)黨史學(xué)習(xí)教育工作的進(jìn)行,若主題班會(huì)、主題團(tuán)日這兩個(gè)階段相鄰,且中心組學(xué)習(xí)必須安排在前兩階段并與黨員活動(dòng)日不相鄰,則不同的安排方案共有()A.10種 B.12種C.16種 D.24種6.某地政府為落實(shí)疫情防控常態(tài)化,不定時(shí)從當(dāng)?shù)?80名公務(wù)員中,采用系統(tǒng)抽樣的方法抽取30人做核酸檢測(cè).把這批公務(wù)員按001到780進(jìn)行編號(hào),若018號(hào)被抽中,則下列編號(hào)也被抽中的是()A.076 B.122C.390 D.5227.已知函數(shù),則下列判斷正確的是()A.直線與曲線相切B.函數(shù)只有極大值,無(wú)極小值C.若與互為相反數(shù),則的極值與的極值互為相反數(shù)D.若與互為倒數(shù),則的極值與的極值互為倒數(shù)8.已知數(shù)列滿足:且,則此數(shù)列的前20項(xiàng)的和為()A.621 B.622C.1133 D.11349.展開(kāi)式的第項(xiàng)為()A. B.C. D.10.已知等差數(shù)列的前n項(xiàng)和為Sn,首項(xiàng)a1=1,若,則公差d的取值范圍為()A. B.C. D.11.如圖所示,在三棱錐中,E,F(xiàn)分別是AB,BC的中點(diǎn),則等于()A. B.C. D.12.如圖所示,一圓形紙片的圓心為O,F(xiàn)是圓內(nèi)一定點(diǎn),M是圓周上一動(dòng)點(diǎn),把紙片折疊使M與F重合,然后抹平紙片,折痕為CD,設(shè)CD與OM交于點(diǎn)P,則點(diǎn)P的軌跡是()A.圓 B.雙曲線C.拋物線 D.橢圓二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的離心率為_(kāi)_________14.設(shè)函數(shù)是函數(shù)的導(dǎo)函數(shù),已知,且,則使得成立的x的取值范圍是_________.15.沈陽(yáng)市某高中有高一學(xué)生600人,高二學(xué)生500人,高三學(xué)生550人,現(xiàn)對(duì)學(xué)生關(guān)于消防安全知識(shí)了解情況進(jìn)行分層抽樣調(diào)查,若抽取了一個(gè)容量為n的樣本,其中高三學(xué)生有11人,則n的值等于________.16.四棱錐A-BCDE中,底面BCDE為矩形,側(cè)面ABC⊥底面BCDE,側(cè)面ABE⊥底面BCDE,BC=2,CD=4(I)證明:AB⊥面BCDE;(II)若AD=2,求二面角C-AD-E的正弦值三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在正方體中,分別是,的中點(diǎn).求證:(1)平面;(2)平面平面.18.(12分)已知橢圓:經(jīng)過(guò)點(diǎn),設(shè)右焦點(diǎn)F,橢圓上存在點(diǎn)Q,使QF垂直于x軸且.(1)求橢圓的方程;(2)過(guò)點(diǎn)的直線與橢圓交于D,G兩點(diǎn).是否存在直線使得以DG為直徑的圓過(guò)點(diǎn)E(-1,0)?若存在,求出直線的方程,若不存在,說(shuō)明理由.19.(12分)已知在數(shù)列中,,且.(1)求,,并證明數(shù)列是等比數(shù)列;(2)求的通項(xiàng)公式及前n項(xiàng)和.20.(12分)在平面直角坐標(biāo)系中,過(guò)點(diǎn)且傾斜角為的直線與曲線(為參數(shù))交于兩點(diǎn).(1)將曲線的參數(shù)方程轉(zhuǎn)化為普通方程;(2)求的長(zhǎng).21.(12分)已知橢圓的左、右焦點(diǎn)分別為,,點(diǎn)在橢圓C上,且滿足(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)直線與橢圓C交于不同的兩點(diǎn)M,N,且(O為坐標(biāo)原點(diǎn)).證明:總存在一個(gè)確定的圓與直線l相切,并求該圓的方程22.(10分)在四棱錐中,底面是直角梯形,,,,分別是棱,的中點(diǎn)(1)證明:平面;(2)若,且四棱錐的體積是6,求三棱錐的體積
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】利用余弦定理結(jié)合橢圓的定義可求得、,即可得出結(jié)論.【詳解】在橢圓中,,,,則,,可得,所以,,解得,此時(shí)點(diǎn)位于橢圓短軸的頂點(diǎn).因此,滿足條件的點(diǎn)的個(gè)數(shù)為.故選:B.2、B【解析】根據(jù)特稱命題的否定是全稱命題即可得正確答案【詳解】存在量詞命題的否定,只需把存在量詞改成全稱量詞,并把后面的結(jié)論否定,所以“,使”的否定為“,有”,故選:B.3、A【解析】將代數(shù)式與相乘,展開(kāi)后利用基本不等式可求得的最小值,可得出關(guān)于實(shí)數(shù)的不等式,解之即可.【詳解】因?yàn)檎龑?shí)數(shù)、滿足,則,即,所以,,當(dāng)且僅當(dāng)時(shí),即當(dāng)時(shí),等號(hào)成立,即的最小值為,因?yàn)椴坏仁接薪?,則,即,即,解得或.故選:A.II卷4、C【解析】建立合適的空間直角坐標(biāo)系,求出和平面的法向量,直線與平面所成角的正弦值即為與的夾角的余弦值的絕對(duì)值,利用夾角公式求出即可.【詳解】建立如圖所示的空間直角坐標(biāo)系.有圖知,由題得、、、.,,.設(shè)平面的一個(gè)法向量,則,,令,得,,.設(shè)直線與平面所成的角為,則.故選:C.【點(diǎn)睛】本題考查線面角的求解,利用向量法可簡(jiǎn)化分析過(guò)程,直接用計(jì)算的方式解決問(wèn)題,是基礎(chǔ)題.5、A【解析】對(duì)中心組學(xué)習(xí)所在的階段分兩種情況討論得解.【詳解】解:如果中心組學(xué)習(xí)在第一階段,主題班會(huì)、主題團(tuán)日在第二、三階段,則其它活動(dòng)有2種方法;主題班會(huì)、主題團(tuán)日在第三、四階段,則其它活動(dòng)有1種方法;主題班會(huì)、主題團(tuán)日在第四、五階段,則其它活動(dòng)有1種方法,則此時(shí)共有種方法;如果中心組學(xué)習(xí)在第二階段,則第一階段只有1種方法,后面的三個(gè)階段有種方法.綜合得不同的安排方案共有10種.故選:A6、B【解析】根據(jù)系統(tǒng)抽樣的特點(diǎn),寫(xiě)出組數(shù)與對(duì)應(yīng)抽取編號(hào)的關(guān)系式,即可判斷和選擇.【詳解】根據(jù)題意,780名公務(wù)員中,采用系統(tǒng)抽樣的方法抽取30人,則需要分為組,每組人;設(shè)第組抽取的編號(hào)為,故可設(shè),又第一組抽中號(hào),故可得,解得故,當(dāng)時(shí),.故選:.7、C【解析】求出函數(shù)的導(dǎo)函數(shù),通過(guò)在某點(diǎn)處的導(dǎo)數(shù)為該點(diǎn)處切線的斜率,求出切線方程,并且判斷出極值,通過(guò)結(jié)合與互為相反數(shù),若與互為倒數(shù),分別判斷的極值與的極值是否互為相反數(shù),以及是否互為倒數(shù).【詳解】,,令,得,所以,因?yàn)椋?,所以曲線在點(diǎn)處的切線方程為,故A錯(cuò);當(dāng)時(shí),存在使,且當(dāng)時(shí),;當(dāng)時(shí),,即有極小值,無(wú)極大值,故B錯(cuò)誤;設(shè)為的極值點(diǎn),則,且,所以,,當(dāng)時(shí),;當(dāng)時(shí),,故C正確,D錯(cuò)誤.8、C【解析】這個(gè)數(shù)列的奇數(shù)項(xiàng)是公差為2的等差數(shù)列,偶數(shù)項(xiàng)是公比為2的等比數(shù)列,只要分開(kāi)來(lái)計(jì)算即可.【詳解】由于,所以當(dāng)n為奇數(shù)時(shí),是等差數(shù)列,即:共10項(xiàng),和為;,共10項(xiàng),其和為;∴該數(shù)列前20項(xiàng)的和;故選:C.9、B【解析】由展開(kāi)式的通項(xiàng)公式求解即可【詳解】因?yàn)椋哉归_(kāi)式的第項(xiàng)為,故選:B10、A【解析】該等差數(shù)列有最大值,可分析得,據(jù)此可求解.【詳解】,故,故有故d取值范圍為.故選:A11、D【解析】根據(jù)向量的線性運(yùn)算公式化簡(jiǎn)可得結(jié)果.【詳解】因?yàn)镋,F(xiàn)分別是AB,AC的中點(diǎn),所以,,所以,故選:D12、D【解析】根據(jù)題意知,所以,故點(diǎn)P的軌跡是橢圓.【詳解】由題意知,關(guān)于CD對(duì)稱,所以,故,可知點(diǎn)P的軌跡是橢圓.【點(diǎn)睛】本題主要考查了橢圓的定義,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】∵雙曲線的方程為∴,∴∴故答案為14、【解析】構(gòu)造函數(shù)利用導(dǎo)數(shù)研究單調(diào)性,即可得到答案;【詳解】,令,,單調(diào)遞減,且,,x的取值范圍是,故答案為:15、33【解析】根據(jù)分層抽樣的性質(zhì)進(jìn)行求解即可.【詳解】因?yàn)槌槿×艘粋€(gè)容量為n的樣本,其中高三學(xué)生有11人,所以有,故答案為:3316、(Ⅰ)詳見(jiàn)解析;(Ⅱ).【解析】(Ⅰ)推導(dǎo)出BE⊥BC,從而B(niǎo)E⊥平面ABC,進(jìn)而B(niǎo)E⊥AB,由面ABE⊥面BCDE,得AB⊥BC,由此能證明AB⊥面BCDE(Ⅱ)以B為原點(diǎn),所在直線分別為x,y,z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角C﹣AD﹣E的正弦值【詳解】由側(cè)面底面,且交線為,底面為矩形所以平面,又平面,所以由面面,同理可證,又面在底面中,,由面,故,以為原點(diǎn),所在直線分別為軸建立空間直角坐標(biāo)系,則,設(shè)平面的法向量,則,取所以平面的法向量,同理可求得平面的法向量.設(shè)二面角的平面角為,則故所求二面角的正弦值為.【點(diǎn)睛】本題考查線面垂直的證明,考查二面角的正弦值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查函數(shù)與方程思想,是中檔題三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、證明見(jiàn)解析【解析】(1)連接,根據(jù)線面平行的判定定理,即可證明結(jié)論成立;(2)連接,,先由線面平行的判定定理,得到平面,再由(1)的結(jié)果,結(jié)合面面平行的判定定理,即可證明結(jié)論成立.【詳解】(1)如圖,連接.∵四邊形是正方形,是的中點(diǎn),∴是的中點(diǎn).又∵是的中點(diǎn),∴.∵平面,平面,∴平面.(2)連接,,∵四邊形是正方形,是的中點(diǎn),∴是的中點(diǎn).又∵是中點(diǎn),∴.∵平面平面,∴平面.由(1)知平面,且,∴平面平面.【點(diǎn)睛】本題主要考查證明線面平行與面面平行,熟記線面平行的判定定理以及面面平行的判定定理即可,屬于常考題型.18、(1);(2)存在,或.【解析】(1)根據(jù)題意,列出的方程組,求得,則橢圓方程得解;(2)對(duì)直線的斜率進(jìn)行討論,當(dāng)斜率存在時(shí),設(shè)出直線方程,聯(lián)立橢圓方程,利用韋達(dá)定理,轉(zhuǎn)化題意為,求解即可.小問(wèn)1詳解】由題意,得,設(shè),將代入橢圓方程,得,所以,解得,所以橢圓的方程為.【小問(wèn)2詳解】當(dāng)斜率不存在時(shí),即時(shí),,為橢圓短軸兩端點(diǎn),則以為直徑的圓為,恒過(guò)點(diǎn),滿足題意;當(dāng)斜率存在時(shí),設(shè),,,由得:,,解得:,,若以為直徑的圓過(guò)點(diǎn),則,即,又,,,解得:,滿足,即,此時(shí)直線的方程為綜上,存在直線使得以為直徑的圓過(guò)點(diǎn),的方程為或19、(1),,證明見(jiàn)解析(2),【解析】(1)根據(jù)遞推關(guān)系求出,,對(duì)遞推公式變形,即可得證;(2)結(jié)合(1)求得通項(xiàng)公式,分組求和.【小問(wèn)1詳解】因?yàn)椋宜?,,∵,∴,∵,∴,且,∴?shù)列是等比數(shù)列.【小問(wèn)2詳解】由(1)可知是以為首項(xiàng),以3為公比的等比數(shù)列,即,即;.20、(1);(2).【解析】(1)利用公式直接將橢圓的參數(shù)方程轉(zhuǎn)化為普通方程即可.(2)首先求出直線的參數(shù)方程,代入橢圓的普通方程得到,再利用直線參數(shù)方程的幾何意義求弦長(zhǎng)即可.【詳解】(1)因?yàn)榍€(為參數(shù)),所以曲線的普通方程為:.(2)由題知:直線的參數(shù)方程為(為參數(shù)),將直線的參數(shù)方程代入,得.,.所以.21、(1);(2)理由見(jiàn)解析,圓的方程為.【解析】(1)根據(jù)給定條件可得,結(jié)合勾股定理、橢圓定義求出a,b得解.(2)聯(lián)立直線l與橢圓C的方程,利用給定條件求出k,m的關(guān)系,再求出原點(diǎn)O到直線l的距離即可推理作答.【小問(wèn)1詳解】因,則,點(diǎn)在橢圓C上,則橢圓C的半焦距,,,因此,,解得,,所以橢圓C的標(biāo)準(zhǔn)方程是:.【小問(wèn)2詳解】由消去y并整理得:,依題意,,設(shè),,因,則,于是得,此時(shí),,則原點(diǎn)O到直線l的距離,所以,存在以原點(diǎn)O為圓心,為半徑的圓與直線l相切,此圓的方程為.【點(diǎn)睛】思路點(diǎn)睛:涉及動(dòng)直線與圓錐曲線相交滿足某個(gè)條件問(wèn)題,可設(shè)直線方程為,再與圓錐曲線方程聯(lián)立結(jié)合已知條件探求k,m的關(guān)系,然后推理求解.22、(1)證明見(jiàn)解析.(2)2.【解析】(1)取的中點(diǎn),連接,.運(yùn)用面面平行的判定和性質(zhì)可得證;(2)過(guò)點(diǎn)作,垂足為,連接,,設(shè)點(diǎn)到平面的距離為,根據(jù)棱錐的體積求得
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年消防器材智能化改造升級(jí)服務(wù)合同2篇
- 2024租賃合同簽訂程序及條件
- 2025年拓展訓(xùn)練合同范本大全:企業(yè)團(tuán)隊(duì)凝聚力提升計(jì)劃3篇
- 二零二四年度2024年三人健身產(chǎn)業(yè)合作合同6篇
- 2025年洗車(chē)場(chǎng)車(chē)輛停放管理及承包合同3篇
- 2025版航空航天專(zhuān)用鋁合金采購(gòu)合同書(shū)4篇
- 二零二四年云服務(wù)器租賃與智能運(yùn)維合同3篇
- 個(gè)人汽車(chē)租賃合同樣本 2024年版版B版
- 2025年度臨時(shí)臨時(shí)設(shè)施租賃合同標(biāo)準(zhǔn)范本4篇
- 2025年無(wú)償使用政府辦公樓場(chǎng)地舉辦會(huì)議合同范本3篇
- 非誠(chéng)不找小品臺(tái)詞
- 2024年3月江蘇省考公務(wù)員面試題(B類(lèi))及參考答案
- 患者信息保密法律法規(guī)解讀
- 老年人護(hù)理風(fēng)險(xiǎn)防控PPT
- 充電樁采購(gòu)安裝投標(biāo)方案(技術(shù)方案)
- 醫(yī)院科室考勤表
- 鍍膜員工述職報(bào)告
- 春節(jié)期間化工企業(yè)安全生產(chǎn)注意安全生產(chǎn)
- 保險(xiǎn)行業(yè)加強(qiáng)清廉文化建設(shè)
- Hive數(shù)據(jù)倉(cāng)庫(kù)技術(shù)與應(yīng)用
- 數(shù)字的秘密生活:最有趣的50個(gè)數(shù)學(xué)故事
評(píng)論
0/150
提交評(píng)論