




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
陜西省西安三中2023-2024學年高二上數(shù)學期末聯(lián)考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設等比數(shù)列的前項和為,若,則的值是()A. B.C. D.42.已知,則下列說法錯誤的是()A.若,分別是直線,的方向向量,則直線,所成的角的余弦值是B.若,分別是直線l的方向向量與平面的法向量,則直線l與平面所成的角的正弦值是C.若,分別是平面,的法向量,則平面,所成的角的余弦值是D.若,分別是直線l的方向向量與平面的法向量,則直線l與平面所成的角的正弦值是3.已知橢圓的長軸長是短軸長的倍,左焦點、右頂點和下頂點分別為,坐標原點到直線的距離為,則的面積為()A. B.4C. D.4.橢圓的焦點為、,上頂點為,若,則()A B.C. D.5.圓C:的圓心坐標和半徑分別為()A.和4 B.(-3,2)和4C.和 D.和6.從2,4中選一個數(shù)字,從1,3,5中選兩個數(shù)字,組成無重復數(shù)字的三位數(shù)的個數(shù)為()A.48 B.36C.24 D.187.設雙曲線的左、右頂點分別為、,左、右焦點分別為、,以為直徑的圓與雙曲線左支的一個交點為若以為直徑的圓與直線相切,則的面積為()A. B.C. D.8.若傾斜角為的直線過兩點,則實數(shù)()A. B.C. D.9.已知點O為坐標原點,拋物線C:的焦點為F,點T在拋物線C的準線上,線段FT與拋物線C的交點為W,,則()A.1 B.C. D.10.已知函數(shù)在區(qū)間上是增函數(shù),則實數(shù)的取值范圍是()A. B.C. D.11.若曲線的一條切線與直線垂直,則的方程為()A. B.C. D.12.已知,命題“若,則,全為0”的否命題是()A.若,則,全不為0. B.若,不全為0,則.C.若,則,不全為0. D.若,則,全不為0.二、填空題:本題共4小題,每小題5分,共20分。13.已知點,則線段的垂直平分線的一般式方程為__________.14.下圖是個幾何體的展開圖,圖①是由個邊長為的正三角形組成;圖②是由四個邊長為的正三角形和一個邊長為的正方形組成;圖③是由個邊長為的正三角形組成;圖④是由個邊長為的正方形組成.若幾何體能夠穿過直徑為的圓,則該幾何體的展開圖可以是______(填所有正確結(jié)論的序號).15.設f(x)=xlnx,若f′(x0)=2,則x0=________16.隨機變量X的取值為0,1,2,若,,則_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知的三個頂點的坐標分別為,,(1)求邊AC上的中線所在直線方程;(2)求的面積18.(12分)已知函數(shù).(1)求函數(shù)在處的切線方程;(2)求函數(shù)在區(qū)間上的最大值與最小值.19.(12分)如圖,在四棱錐中,底面,底面是邊長為2的正方形,,F(xiàn),G分別是,的中點(1)求證:平面;(2)求平面與平面的夾角的大小20.(12分)拋物線的焦點為F,過點F的直線交拋物線于A,B兩點(1)若,求直線AB的斜率;(2)設點M在線段AB上運動,原點O關(guān)于點M的對稱點為C,求四邊形OACB面積的最小值21.(12分)已知拋物線:()的焦點為,點在上,點在的內(nèi)側(cè),且的最小值為(1)求的方程;(2)過點的直線與拋物線交于不同的兩點,,直線,(為坐標原點)分別交直線于點,記直線,,的斜率分別為,,,若,求的值22.(10分)已知命題p:方程的曲線是焦點在y軸上的雙曲線;命題q:方程無實根.若p或q為真,¬q為真,求實數(shù)m的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)題意,由等比數(shù)列的性質(zhì)可知成等比數(shù)列,從而可得,即可求出的結(jié)果.【詳解】解:已知等比數(shù)列的前項和為,,由等比數(shù)列的性質(zhì)得:成等比數(shù)列,且公比不為-1即成等比數(shù)列,,,.故選:B.2、D【解析】利用空間角的意義結(jié)合空間向量求空間角的方法逐一分析各選項即可判斷作答.【詳解】對于A,因分別是直線的方向向量,且,直線所成的角為,則,A正確;對于B,D,因分別是直線l的方向向量與平面的法向量,且,直線l與平面所成的角為,則有,B正確,D錯誤;對于C,因分別是平面的法向量,且,平面所成的角為,則不大于,,C正確.故選:D3、C【解析】設,根據(jù)題意,可知的方程為直線,根據(jù)原點到直線的距離建立方程,求出,進而求出,的值,以及到直線的距離,再根據(jù)面積公式,即可求出結(jié)果.【詳解】設,由題意可知,其中,所以的方程為,即所以原點到直線的距離為,所以,即,;所以直線的方程為,所以到直線的距離為;又,所以的面積為.故選:C.4、C【解析】分析出為等邊三角形,可得出,進而可得出關(guān)于的等式,即可解得的值.【詳解】在橢圓中,,,,如下圖所示:因為橢圓的上頂點為點,焦點為、,所以,,為等邊三角形,則,即,因此,.故選:C.5、C【解析】先將方程化為一般形式,再根據(jù)公式計算求解即可.【詳解】解:可化為,由圓心為,半徑,易知圓心的坐標為,半徑為故選:C6、B【解析】直接利用乘法分步原理分三步計算即得解.【詳解】從中選一個數(shù)字,有種方法;從中選兩個數(shù)字,有種方法;組成無重復數(shù)字的三位數(shù),有個.故選:B7、C【解析】據(jù)三角形中位線可得;再由雙曲線的定義求出,進而求出的面積【詳解】雙曲線的方程為:,,設以為直徑的圓與直線相切與點,則,且,,∥.又為的中點,,又,,的面積為:.故選:C8、A【解析】解方程即得解.【詳解】解:由題得.故選:A9、B【解析】根據(jù)平面向量共線的性質(zhì),結(jié)合拋物線的定義進行求解即可.【詳解】由已知得:,該拋物線的準線方程為:,所以設,因為,所以,由拋物線的定義可知:,故選:B10、D【解析】由在上恒成立,再轉(zhuǎn)化為求函數(shù)的取值范圍可得【詳解】由已知,在上是增函數(shù),則在上恒成立,即,,當時,,所以故選:D11、A【解析】兩直線垂直,斜率之積為,曲線與直線相切,聯(lián)立方程令.【詳解】法一:直線,所以,所以切線的,設切線的方程為,聯(lián)立方程,所以,令,解得,所以切線方程為.法二:直線,所以,所以切線的,,所以令,所以,帶入曲線方程得切點坐標為,所以切線方程為,化簡得.故選:A.12、C【解析】根據(jù)四種命題的關(guān)系求解.【詳解】因為否命題是否定原命題的條件和結(jié)論,所以命題“若,則,全為0”的否命題是:若,則,不全為0,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由中點坐標公式和斜率公式可得的中點和直線斜率,由垂直關(guān)系可得垂直平分線的斜率,由點斜式可得直線方程,化為一般式即可【詳解】由中點坐標公式可得,的中點為,可得直線的斜率為,由垂直關(guān)系可得其垂直平分線的斜率為,故可得所求直線的方程為:,化為一般式可得故答案為:14、①【解析】根據(jù)幾何體展開圖可知①正四面體、②正四棱錐、③正八面體、④正方體,進而求其外接球半徑,并與比較大小,即可確定答案.【詳解】①由題設,幾何體為棱長為的正四面體,該正四面體可放入一個正方體中,且正方體的棱長為,該正四面體的外接球半徑為,滿足要求;②由題設,幾何體為棱長為的正四棱錐,如下圖所示:設,連接,則為、的中點,因為四邊形是邊長為的正方形,則,所以,,所以,,所以,,,所以點為正四棱錐的外接球球心,且該球的半徑為,不滿足要求;③由題設,幾何體為棱長為的正八面體,該正八面體可由兩個共底面,且棱長均為的正四棱錐拼接而成,由②可知,該正八面體的外接球半徑為,不滿足要求;④由題設,幾何體為棱長為的正方體,其外接球半徑為,不滿足要求;故答案為:①.15、【解析】f(x)=xlnx∴f'(x)=lnx+1則f′(x0)=lnx0+1=2解得:x0=e16、##0.4【解析】設出概率,利用期望求出相應的概率,進而利用求方差公式進行求解.【詳解】設,則,從而,解得:,所以故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)先求得的中點,由此求得邊AC上的中線所在直線方程.(2)結(jié)合點到直線距離公式求得的面積.【小問1詳解】的中點為,所以邊AC上的中線所在直線方程為.【小問2詳解】直線的方程為,到直線的距離為,,所以.18、(1)(2),【解析】(1)根據(jù)導數(shù)的幾何意義即可求解;(2)根據(jù)導數(shù)的正負判斷f(x)的單調(diào)性,根據(jù)其單調(diào)性即可求最大值和最小值.【小問1詳解】,切點為(1,-2),∵,∴切線斜率,切線方程為;【小問2詳解】令,解得,1200極大值極小值2∵,,∴當時,,.19、(1)證明見解析(2)【解析】(1)取中點連接,連接,證得四邊形為平行四邊形,,再證面,即可得到證明結(jié)果;(2)建立空間坐標系,求面和面的法向量,即可得到兩個面的二面角的余弦值,進而得到二面角大小.【小問1詳解】如上圖,取中點連接,連接,均為線段中點,且,又G是的中點,且且四邊形為平行四邊形為等腰直角三角形,為斜邊中點,面,面面又面.【小問2詳解】建立如圖坐標系,設面的法向量為設面的法向量為兩個法向量的夾角余弦值為:,由圖知兩個面的二面角為鈍角,故夾角為.20、(1);(2)面積最小值是4【解析】本題主要考查拋物線的標準方程及其幾何性質(zhì)、直線與圓錐曲線的位置關(guān)系、直線的斜率等基礎知識,考查學生的分析問題解決問題的能力、轉(zhuǎn)化能力、計算能力.第一問,依題意F(1,0),設直線AB的方程為.將直線AB的方程與拋物線的方程聯(lián)立,得,由此能夠求出直線AB的斜率;第二問,由點C與原點O關(guān)于點M對稱,得M是線段OC的中點,從而點O與點C到直線AB的距離相等,所以四邊形OACB的面積等于,由此能求出四邊形OACB的面積的最小值試題解析:(1)依題意知F(1,0),設直線AB方程為.將直線AB的方程與拋物線的方程聯(lián)立,消去x得.設,,所以,.①因為,所以.②聯(lián)立①和②,消去,得所以直線AB的斜率是(2)由點C與原點O關(guān)于點M對稱,得M是線段OC中點,從而點O與點C到直線AB的距離相等,所以四邊形OACB的面積等于因為,所以當m=0時,四邊形OACB的面積最小,最小值是4考點:拋物線的標準方程及其幾何性質(zhì)、直線與圓錐曲線的位置關(guān)系、直線的斜率21、(1)(2)【解析】(1)先求出拋物線的準線,作于由拋物線的定義,可得,從而當且僅當,,三點共線時取得最小,得出答案.(2)設,,設:與拋物線方程聯(lián)立,得出韋達定理,設出直線的方程分別與直線的方程聯(lián)立得出點的坐標,進一步得到,的表達式,由條件可得答案.【小問1詳解】的準線為:,作于,則,所以,因為點在的內(nèi)側(cè),所以當且僅當,,三點共線時取得最小值,所以,解得,所以的方程為【小問2詳解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 畫冊印刷合同協(xié)議模板
- 豬舍用地出租合同協(xié)議
- 2025至2030年中國管道切割機數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國石雕垃圾桶數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國煤氣泄漏探測器數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國液位液溫計數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國收割機切割器總成數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國抽繩包數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國微型反應裝置數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國平開梃數(shù)據(jù)監(jiān)測研究報告
- 中鐵投資公司招聘筆試題
- 2024年十堰市中小學教師職稱晉升水平能力測試題附答案
- 中藥熱奄包在急性胃炎治療中的應用研究
- 觀光小火車方案
- 《資本論》思維導圖
- 辦學許可證續(xù)期申請書
- MSA測量系統(tǒng)分析英文版培訓教材
- 初中道德與法治實踐性作業(yè)創(chuàng)新設計
- 移動應用程序安全漏洞檢測項目可行性分析報告
- 易燃液體罐式運輸半掛車合格證
- 齒輪泵泵體的加工工藝與專用夾具設計
評論
0/150
提交評論