四川省成都經(jīng)濟(jì)技術(shù)開發(fā)區(qū)實(shí)驗(yàn)中學(xué)校2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試試題含解析_第1頁(yè)
四川省成都經(jīng)濟(jì)技術(shù)開發(fā)區(qū)實(shí)驗(yàn)中學(xué)校2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試試題含解析_第2頁(yè)
四川省成都經(jīng)濟(jì)技術(shù)開發(fā)區(qū)實(shí)驗(yàn)中學(xué)校2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試試題含解析_第3頁(yè)
四川省成都經(jīng)濟(jì)技術(shù)開發(fā)區(qū)實(shí)驗(yàn)中學(xué)校2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試試題含解析_第4頁(yè)
四川省成都經(jīng)濟(jì)技術(shù)開發(fā)區(qū)實(shí)驗(yàn)中學(xué)校2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

四川省成都經(jīng)濟(jì)技術(shù)開發(fā)區(qū)實(shí)驗(yàn)中學(xué)校2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,那么函數(shù)在x=π處的瞬時(shí)變化率為()A. B.0C. D.2.設(shè),則“”是“直線與直線”平行的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.即不充分也不必要條件3.在等比數(shù)列{an}中,a3,a15是方程x2+6x+2=0的根,則的值為()A. B.C. D.或4.設(shè)函數(shù),則和的值分別為()A.、 B.、C.、 D.、5.已知數(shù)列滿足,令是數(shù)列的前n項(xiàng)積,,現(xiàn)給出下列四個(gè)結(jié)論:①;②為單調(diào)遞增的等比數(shù)列;③當(dāng)時(shí),取得最大值;④當(dāng)時(shí),取得最大值其中所有正確結(jié)論的編號(hào)為()A.②④ B.①③C.②③④ D.①③④6.設(shè)拋物線的焦點(diǎn)為F,過點(diǎn)F且垂直于x軸的直線與拋物線C交于A,B兩點(diǎn),若,則()A1 B.2C.4 D.87.雙曲線:的左、右焦點(diǎn)分別為、,過的直線與y軸交于點(diǎn)A、與雙曲線右支交于點(diǎn)B,若為等邊三角形,則雙曲線C的離心率為()A. B.C.2 D.8.已知函數(shù),若函數(shù)有3個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.9.已知函數(shù),,若對(duì)任意的,,都有成立,則實(shí)數(shù)的取值范圍是()A. B.C. D.10.已知是兩個(gè)數(shù)1,9的等比中項(xiàng),則圓錐曲線的離心率為()A.或 B.或C. D.11.現(xiàn)有60瓶飲料,編號(hào)從1到60,若用系統(tǒng)抽樣的方法從中抽取6瓶進(jìn)行檢驗(yàn),則所抽取的編號(hào)可能為()A.3,13,23,33,43,53 B.2,14,26,38,40,52C.5,8,31,36,48,54 D.5,10,15,20,25,3012.已知直線l:的傾斜角為,則()A. B.1C. D.-1二、填空題:本題共4小題,每小題5分,共20分。13.直線恒過定點(diǎn),則定點(diǎn)坐標(biāo)為________14.已知直線與直線平行,則實(shí)數(shù)m的值為______15.直線與直線的夾角大小等于_______16.拋物線的焦點(diǎn)坐標(biāo)為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線E:y2=8x(1)求拋物線的焦點(diǎn)及準(zhǔn)線方程;(2)過點(diǎn)P(-1,1)的直線l1與拋物線E只有一個(gè)公共點(diǎn),求直線l1的方程;(3)過點(diǎn)M(2,3)的直線l2與拋物線E交于點(diǎn)A,B.若弦AB的中點(diǎn)為M,求直線l2的方程18.(12分)已知三角形的三個(gè)頂點(diǎn)是,,(1)求邊上的中線所在直線的方程;(2)求邊上的高所在直線的方程19.(12分)已知?jiǎng)狱c(diǎn)M到定點(diǎn)和的距離之和為4(1)求動(dòng)點(diǎn)軌跡的方程;(2)若直線交橢圓于兩個(gè)不同的點(diǎn)A,B,O是坐標(biāo)原點(diǎn),求的面積20.(12分)設(shè)圓的圓心為A,直線l過點(diǎn)且與x軸不重合,l交圓A于C,D兩點(diǎn),過B作AC的平行線交AD于點(diǎn)E(1)判斷與題中圓A的半徑的大小關(guān)系,并寫出點(diǎn)E的軌跡方程;(2)過點(diǎn)作斜率為,的兩條直線,分別交點(diǎn)E的軌跡于M,N兩點(diǎn),且,證明:直線MN必過定點(diǎn)21.(12分)求證:(1)是上的偶函數(shù);(2)是上的奇函數(shù).22.(10分)用長(zhǎng)度為80米的護(hù)欄圍出一個(gè)一面靠墻的矩形運(yùn)動(dòng)場(chǎng)地,如圖所示,運(yùn)動(dòng)場(chǎng)地的一條邊記為(單位:米),面積記為(單位:平方米)(1)求關(guān)于的函數(shù)關(guān)系;(2)求的最大值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】利用導(dǎo)數(shù)運(yùn)算法則求出,根據(jù)導(dǎo)數(shù)的定義即可得到結(jié)論【詳解】由題設(shè),,所以,函數(shù)在x=π處瞬時(shí)變化率為,故選:A2、D【解析】由兩直線平行確定參數(shù)值,根據(jù)充分必要條件的定義判斷【詳解】時(shí),兩直線方程分別為,,它們重合,不平行,因此不是充分條件;反之,兩直線平行時(shí),,解得或,由上知時(shí),兩直線不平行,時(shí),兩直線方程分別為,,平行,因此,本題中也不是必要條件故選:D3、B【解析】由韋達(dá)定理得a3a15=2,由等比數(shù)列通項(xiàng)公式性質(zhì)得:a92=a3a15=a2a16=2,由此求出答案【詳解】解:∵在等比數(shù)列{an}中,a3,a15是方程x2-6x+2=0的根,∴a3a15=2>0,a3+a15=-6<0∴a2a16=a3a15=2,a92=a3a15=2,∴a9=,∴,故選B【點(diǎn)睛】本題考查等比數(shù)列中兩項(xiàng)積與另一項(xiàng)的比值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用4、D【解析】求得,即可求得、的值.【詳解】,則,則,故,.故選:D.5、B【解析】求出,即可判斷選項(xiàng)①正確;求出,即可選項(xiàng)②錯(cuò)誤;求出,利用單調(diào)性即可判斷選項(xiàng)③正確;求出,即可判斷選項(xiàng)④錯(cuò)誤,即得解.【詳解】解:因?yàn)?,①所以,,②①②得,,整理得,又,滿足上式,所以,因?yàn)?,所以?shù)列為等差數(shù)列,公差為,所以,故①正確;,因?yàn)?,故?shù)列為等比數(shù)列,其中首項(xiàng),公比為的等比數(shù)列,因?yàn)?,,所以?shù)列為遞減的等比數(shù)列,故②錯(cuò)誤;,因?yàn)闉閱握{(diào)遞增函數(shù),所以當(dāng)最大時(shí),有最大值,因?yàn)?,所以時(shí),最大,即時(shí),取得最大值,故③正確;設(shè),由可得,,解得或,又因?yàn)?,所以時(shí),取得最大值,故④錯(cuò)誤;故選:B6、C【解析】根據(jù)焦點(diǎn)弦的性質(zhì)即可求出【詳解】依題可知,,所以故選:C7、B【解析】由雙曲線的定義知,,又為等邊三角形,所以,由對(duì)稱性有,所以,在直角三角形中,求出,在三角形中,由余弦定理求出,從而即可求解.【詳解】解:由雙曲線的定義知,,又為等邊三角形,所以,由對(duì)稱性有,所以,在直角三角形中,,在三角形中,由余弦定理有,所以,解得,所以雙曲線C的離心率,故選:B.8、B【解析】構(gòu)造,通過求導(dǎo),研究函數(shù)的單調(diào)性及極值,最值,畫出函數(shù)圖象,數(shù)形結(jié)合求出實(shí)數(shù)的取值范圍.【詳解】令,即,令,當(dāng)時(shí),,,令得:或,結(jié)合,所以,令得:,結(jié)合得:,所以在處取得極大值,也是最大值,,當(dāng)時(shí),,且,當(dāng)時(shí),,則恒成立,單調(diào)遞增,且當(dāng)時(shí),,當(dāng)時(shí),,畫出的圖象,如下圖:要想有3個(gè)零點(diǎn),則故選:B9、B【解析】根據(jù)題意,將問題轉(zhuǎn)化為對(duì)任意的,,利用導(dǎo)數(shù)求得的最大值,再分離參數(shù),構(gòu)造函數(shù),利用導(dǎo)數(shù)求其最大值,即可求得參數(shù)的取值范圍.【詳解】由題可知:對(duì)任意的,,都有恒成立,故可得對(duì)任意的,;又,則,故在單調(diào)遞減,在單調(diào)遞增,又,,則當(dāng)時(shí),,.對(duì)任意的,,即,恒成立.也即,不妨令,則,故在單調(diào)遞增,在單調(diào)遞減.故,則只需.故選:B.10、A【解析】根據(jù)題意可知,當(dāng)時(shí),根據(jù)橢圓離心率公式,即可求出結(jié)果;當(dāng)時(shí),根據(jù)雙曲線離心率公式,即可求出結(jié)果.【詳解】因?yàn)槭莾蓚€(gè)數(shù)1,9的等比中項(xiàng),所以,所以,當(dāng)時(shí),圓錐曲線,其離心率為;當(dāng)時(shí),圓錐曲線,其離心率為;綜上,圓錐曲線的離心率為或.故選:A.11、A【解析】求得組距,由此確定正確選項(xiàng).【詳解】,即組距為,A選項(xiàng)符合,其它選項(xiàng)不符合.故選:A12、A【解析】由傾斜角求出斜率,列方程即可求出m.【詳解】因?yàn)橹本€l的傾斜角為,所以斜率.所以,解得:.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】解方程組可求得定點(diǎn)坐標(biāo).【詳解】直線方程可化為,由,可得.故直線恒過定點(diǎn).故答案為:.14、【解析】由兩直線平行的判定可得求解即可,注意驗(yàn)證是否出現(xiàn)直線重合的情況.【詳解】由題設(shè),,解得,經(jīng)檢驗(yàn)滿足題設(shè).故答案為:15、##【解析】根據(jù)直線的傾斜角可得答案.【詳解】直線是與軸平行的直線,直線的斜率為1,即與軸的夾角為角,故直線與直線的夾角大小等于.故答案為:.16、【解析】利用焦點(diǎn)坐標(biāo)為求解即可【詳解】因?yàn)?,所以,所以焦點(diǎn)的坐標(biāo)為,故答案:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)焦點(diǎn)為(2,0),準(zhǔn)線方程為x=-2;(2)y=1或x-y+2=0或2x+y+1=0;(3)4x-3y+1=0.【解析】(1)根據(jù)拋物線的方程及其幾何性質(zhì),求焦點(diǎn)和準(zhǔn)線;(2)分直線l1的斜率為0和不為0兩種情況,根據(jù)直線與拋物線只有一個(gè)公共點(diǎn),由直線與x軸平行或Δ=0,得解;(3)利用點(diǎn)差法求出直線l2的斜率,即可得直線l2的方程【小問1詳解】由題意,p=4,則焦點(diǎn)為(2,0),準(zhǔn)線方程為x=-2【小問2詳解】當(dāng)直線l1的斜率為0時(shí),y=1;當(dāng)直線l1的斜率不為0時(shí),設(shè)直線l1為x+1=m(y-1),聯(lián)立,得y2-8my+8m+8=0,因?yàn)橹本€l1與拋物線E只有一個(gè)公共點(diǎn),所以Δ=64m2-4(8m+8)=0,解得m=1或,所以直線l1的方程為x-y+2=0或2x+y+1=0,綜上,直線l1為y=1或x-y+2=0或2x+y+1=0【小問3詳解】由題意,直線l2的斜率一定存在,設(shè)其斜率為k,A(x1,y1),B(x2,y2),則8x1,8x2,兩式作差得:8(x1-x2),即k,所以直線l2為y-3(x-2),即4x-3y+1=018、(1);(2)【解析】(1)先求出BC的中點(diǎn)坐標(biāo),再利用兩點(diǎn)式求出直線的方程;(2)先求出BC邊上的高所在直線的斜率,再利用點(diǎn)斜式求出直線的方程.【詳解】(1)設(shè)線段的中點(diǎn)為因?yàn)?,,所以的中點(diǎn),所以邊上的中線所在直線的方程為,即(2)因?yàn)?,,所以邊所在直線的斜率,所以邊上的高所在直線的斜率為,所以邊上的高所在直線的方程為,即【點(diǎn)睛】本題主要考查直線方程的求法,屬于基礎(chǔ)題.19、(1);(2).【解析】(1)利用橢圓的定義即求;(2)由直線方程與橢圓方程聯(lián)立,可解得點(diǎn),再利用三角形面積公式即求.【小問1詳解】∵動(dòng)點(diǎn)M到定點(diǎn)和的距離之和為4,∴動(dòng)點(diǎn)M的軌跡是以和為焦點(diǎn)的橢圓,可設(shè)方程為,則,故動(dòng)點(diǎn)軌跡的方程為;【小問2詳解】由可得,∴或,∴,又O是坐標(biāo)原點(diǎn),∴的面積為.20、(1)與半徑相等,(2)證明見解析【解析】(1)依據(jù)橢圓定義去求點(diǎn)E的軌跡方程事半功倍;(2)直線MN要分為斜率存在的和不存在的兩種情況進(jìn)行討論,由設(shè)而不求法把條件轉(zhuǎn)化為直線MN過定點(diǎn)的條件即可解決.【小問1詳解】圓即為,可得圓心,半徑,由,可得,由,可得,即為,即有,則,所以其與半徑相等.因?yàn)椋蔈的軌跡為以A,B為焦點(diǎn)的橢圓(不包括左右頂點(diǎn)),且有,,即,,,則點(diǎn)E的軌跡方程為;【小問2詳解】當(dāng)直線MN斜率不存在時(shí),設(shè)直線方程為,則,,,,則,∴,此時(shí)直線MN的方程為當(dāng)直線MN斜率存在時(shí),設(shè)直線方程為:,與橢圓方程聯(lián)立:,得,設(shè),,有則將*式代入化簡(jiǎn)可得:,即,∴,此時(shí)直線MN:,恒過定點(diǎn)又直線MN斜率不存在時(shí),直線MN:也過,故直線MN過定點(diǎn).【點(diǎn)睛】數(shù)形結(jié)合是數(shù)學(xué)解題中常用的思想方法,數(shù)形結(jié)合的思想可以使某些抽象的數(shù)學(xué)問題直觀化、生動(dòng)化,能夠變抽象思維為形象思維,有助于把握數(shù)學(xué)問題的本質(zhì);另外,由于使用了數(shù)形結(jié)合的方法,很多

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論