




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第13講二項式定理真題展示2022新高考一卷第13題SKIPIF1<0的展開式中SKIPIF1<0的系數(shù)為SKIPIF1<0(用數(shù)字作答).【思路分析】由題意依次求出SKIPIF1<0中SKIPIF1<0,SKIPIF1<0項的系數(shù),求和即可.【解析】SKIPIF1<0的通項公式為SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0的展開式中SKIPIF1<0的系數(shù)為SKIPIF1<0.故答案為:SKIPIF1<0.【試題評價】本題考查二項式定理的應(yīng)用,考查運算求解能力,是基礎(chǔ)題.知識要點整理知識點一二項式定理(a+b)n=Ceq\o\al(0,n)an+Ceq\o\al(1,n)an-1b+Ceq\o\al(2,n)an-2b2+…+Ceq\o\al(k,n)an-kbk+…+Ceq\o\al(n,n)bn(n∈N*).(1)這個公式叫做二項式定理.(2)展開式:等號右邊的多項式叫做(a+b)n的二項展開式,展開式中一共有n+1項.(3)二項式系數(shù):各項的系數(shù)Ceq\o\al(k,n)(k∈{0,1,2,…,n})叫做二項式系數(shù).知識點二二項展開式的通項(a+b)n展開式的第k+1項叫做二項展開式的通項,記作Tk+1=Ceq\o\al(k,n)an-kbk.知識點三二項式系數(shù)的性質(zhì)對稱性在(a+b)n的展開式中,與首末兩端“等距離”的兩個二項式系數(shù)相等,即Ceq\o\al(m,n)=Ceq\o\al(n-m,n)增減性與最大值增減性:當k<eq\f(n+1,2)時,二項式系數(shù)是逐漸增大的;當k>eq\f(n+1,2)時,二項式系數(shù)是逐漸減小的.最大值:當n為偶數(shù)時,中間一項的二項式系數(shù)SKIPIF1<0最大;當n為奇數(shù)時,中間兩項的二項式系數(shù)SKIPIF1<0,SKIPIF1<0相等,且同時取得最大值各二項式系數(shù)的和(1)Ceq\o\al(0,n)+Ceq\o\al(1,n)+Ceq\o\al(2,n)+…+Ceq\o\al(n,n)=2n;(2)Ceq\o\al(0,n)+Ceq\o\al(2,n)+Ceq\o\al(4,n)+…=Ceq\o\al(1,n)+Ceq\o\al(3,n)+Ceq\o\al(5,n)+…=2n-1三年真題一、單選題1.若SKIPIF1<0,則SKIPIF1<0(
)A.40 B.41 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,故選:B.2.在SKIPIF1<0的二項展開式中,第SKIPIF1<0項的二項式系數(shù)是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】第SKIPIF1<0項的二項式系數(shù)為SKIPIF1<0,故選:A.3.在SKIPIF1<0的展開式中,SKIPIF1<0的系數(shù)為(
).A.SKIPIF1<0 B.5 C.SKIPIF1<0 D.10【答案】C【詳解】SKIPIF1<0展開式的通項公式為:SKIPIF1<0,令SKIPIF1<0可得:SKIPIF1<0,則SKIPIF1<0的系數(shù)為:SKIPIF1<0.故選:C.4.SKIPIF1<0的展開式中x3y3的系數(shù)為(
)A.5 B.10C.15 D.20【答案】C【詳解】SKIPIF1<0展開式的通項公式為SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)所以SKIPIF1<0的各項與SKIPIF1<0展開式的通項的乘積可表示為:SKIPIF1<0和SKIPIF1<0在SKIPIF1<0中,令SKIPIF1<0,可得:SKIPIF1<0,該項中SKIPIF1<0的系數(shù)為SKIPIF1<0,在SKIPIF1<0中,令SKIPIF1<0,可得:SKIPIF1<0,該項中SKIPIF1<0的系數(shù)為SKIPIF1<0所以SKIPIF1<0的系數(shù)為SKIPIF1<0故選:C5.(1+2x2)(1+x)4的展開式中x3的系數(shù)為A.12 B.16 C.20 D.24【答案】A【詳解】由題意得x3的系數(shù)為SKIPIF1<0,故選A.二、填空題6.在SKIPIF1<0的展開式中,SKIPIF1<0的系數(shù)是__________.【答案】160【詳解】SKIPIF1<0的展開式的通項為SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的系數(shù)是SKIPIF1<0.故答案為:160.7.在SKIPIF1<0的展開式中,常數(shù)項為__________.【答案】SKIPIF1<0【詳解】的展開式的通項令SKIPIF1<0,解得,故常數(shù)項為.故答案為:SKIPIF1<0.8.SKIPIF1<0的展開式中SKIPIF1<0的系數(shù)為________________(用數(shù)字作答).【答案】-28【分析】SKIPIF1<0可化為SKIPIF1<0,結(jié)合二項式展開式的通項公式求解.【詳解】因為SKIPIF1<0,所以SKIPIF1<0的展開式中含SKIPIF1<0的項為SKIPIF1<0,SKIPIF1<0的展開式中SKIPIF1<0的系數(shù)為-28故答案為:-289.已知多項式SKIPIF1<0,則SKIPIF1<0__________,SKIPIF1<0___________.【答案】
SKIPIF1<0
SKIPIF1<0【詳解】含SKIPIF1<0的項為:SKIPIF1<0,故SKIPIF1<0;令SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,故答案為:SKIPIF1<0;SKIPIF1<0.10.SKIPIF1<0的展開式中的常數(shù)項為______.【答案】SKIPIF1<0【詳解】由題意SKIPIF1<0的展開式的通項為SKIPIF1<0,令SKIPIF1<0即SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0的展開式中的常數(shù)項為SKIPIF1<0.故答案為:SKIPIF1<0.11.在SKIPIF1<0的展開式中,SKIPIF1<0的系數(shù)是_________.【答案】10【詳解】因為SKIPIF1<0的展開式的通項公式為SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0.所以SKIPIF1<0的系數(shù)為SKIPIF1<0.故答案為:SKIPIF1<0.12.SKIPIF1<0的展開式中常數(shù)項是__________(用數(shù)字作答).【答案】SKIPIF1<0【詳解】SKIPIF1<0SKIPIF1<0其二項式展開通項:SKIPIF1<0SKIPIF1<0SKIPIF1<0當SKIPIF1<0,解得SKIPIF1<0SKIPIF1<0SKIPIF1<0的展開式中常數(shù)項是:SKIPIF1<0.故答案為:SKIPIF1<0.13.SKIPIF1<0展開式中的常數(shù)項為________.【答案】SKIPIF1<0【詳解】SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以的常數(shù)項為SKIPIF1<0.【點睛】本題考查二項式定理的應(yīng)用,牢記常數(shù)項是由指數(shù)冪為0求得的.三、雙空題14.已知多項式SKIPIF1<0,則SKIPIF1<0___________,SKIPIF1<0___________.【答案】
SKIPIF1<0;
SKIPIF1<0.【詳解】SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.15.設(shè)SKIPIF1<0,則SKIPIF1<0________;SKIPIF1<0________.【答案】
SKIPIF1<0
SKIPIF1<0【詳解】SKIPIF1<0的通項為SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0;SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0.16.在二項式SKIPIF1<0的展開式中,常數(shù)項是________;系數(shù)為有理數(shù)的項的個數(shù)是_______.【答案】
SKIPIF1<0
SKIPIF1<0【詳解】SKIPIF1<0的通項為SKIPIF1<0可得常數(shù)項為SKIPIF1<0,因系數(shù)為有理數(shù),SKIPIF1<0,有SKIPIF1<0共5個項【點睛】此類問題解法比較明確,首要的是要準確記憶通項公式,特別是“冪指數(shù)”不能記混,其次,計算要細心,確保結(jié)果正確.四、解答題17.設(shè)SKIPIF1<0.已知SKIPIF1<0.(1)求n的值;(2)設(shè)SKIPIF1<0,其中SKIPIF1<0,求SKIPIF1<0的值.【答案】(1)SKIPIF1<0;(2)-32.【詳解】(1)因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.(2)由(1)知,SKIPIF1<0.SKIPIF1<0SKIPIF1<0SKIPIF1<0.解法一:因為SKIPIF1<0,所以SKIPIF1<0,從而SKIPIF1<0.解法二:SKIPIF1<0SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0.因此SKIPIF1<0.三年模擬一、單選題1.SKIPIF1<0的展開式中的常數(shù)項是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.20【答案】B【詳解】SKIPIF1<0展開式的通項為SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,故SKIPIF1<0展開式的常數(shù)項是SKIPIF1<0.故選:B.2.“SKIPIF1<0”是“SKIPIF1<0的二項展開式中存在常數(shù)項”的(
)A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分也非必要條件【答案】A【詳解】二項式SKIPIF1<0的通項為SKIPIF1<0,SKIPIF1<0的二項展開式中存在常數(shù)項SKIPIF1<0為正偶數(shù),SKIPIF1<0為正偶數(shù),n為正偶數(shù)推不出SKIPIF1<0∴SKIPIF1<0是SKIPIF1<0的二項展開式中存在常數(shù)項的充分不必要條件.故選:A3.SKIPIF1<0的展開式中x項的系數(shù)為(
)A.568 B.-160 C.400 D.120【答案】D【詳解】因為SKIPIF1<0,又SKIPIF1<0的展開式的通項為SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的展開式的通項為SKIPIF1<0SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,則x項的系數(shù)為SKIPIF1<0,故選:D.4.已知SKIPIF1<0的展開式中SKIPIF1<0的系數(shù)為10,則實數(shù)a的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.2【答案】B【詳解】SKIPIF1<0的展開式的通項公式為SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0,故選:B.5.二項式SKIPIF1<0展開式中SKIPIF1<0的系數(shù)為(
)A.120 B.135 C.140 D.100【答案】B【詳解】SKIPIF1<0的展開式通項公式為SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故二項式SKIPIF1<0中SKIPIF1<0的四次方項為SKIPIF1<0,即展開式中SKIPIF1<0的系數(shù)為SKIPIF1<0.故選:B6.若二項式SKIPIF1<0SKIPIF1<0的展開式中只有第7項的二項式系數(shù)最大,若展開式的有理項中第SKIPIF1<0項的系數(shù)最大,則SKIPIF1<0(
)A.5 B.6 C.7 D.8【答案】A【詳解】由已知可得,SKIPIF1<0.根據(jù)二項式定理,知展開式的通項為SKIPIF1<0,顯然當SKIPIF1<0是偶數(shù)時,該項為有理項,SKIPIF1<0時,SKIPIF1<0;SKIPIF1<0時,SKIPIF1<0;SKIPIF1<0時,SKIPIF1<0;SKIPIF1<0時,SKIPIF1<0;SKIPIF1<0時,SKIPIF1<0;SKIPIF1<0時,SKIPIF1<0;SKIPIF1<0時,SKIPIF1<0.經(jīng)比較可得,SKIPIF1<0,即SKIPIF1<0時系數(shù)最大,即展開式的有理項中第5項的系數(shù)最大.故選:A.7.SKIPIF1<0展開式中SKIPIF1<0的系數(shù)為(
)A.SKIPIF1<0 B.21 C.SKIPIF1<0 D.35【答案】A【詳解】因為SKIPIF1<0展開式的通項公式為SKIPIF1<0,所以當SKIPIF1<0時,含有SKIPIF1<0的項,此時SKIPIF1<0,故SKIPIF1<0的系數(shù)為SKIPIF1<0.故選:A二、填空題8.在SKIPIF1<0的展開式中,SKIPIF1<0的系數(shù)為__________.【答案】SKIPIF1<0【詳解】由題意可知,把二項式SKIPIF1<0看成由SKIPIF1<0和SKIPIF1<0兩項構(gòu)成,展開式中含SKIPIF1<0的項為SKIPIF1<0,再將SKIPIF1<0展開可得含SKIPIF1<0的項為SKIPIF1<0即可知SKIPIF1<0的系數(shù)為SKIPIF1<0.故答案為:SKIPIF1<09.在二項式SKIPIF1<0的展開式中,系數(shù)最大的項的系數(shù)為__________(結(jié)果用數(shù)值表示).【答案】462【詳解】二項式SKIPIF1<0的展開式的通項公式為SKIPIF1<0,所以當SKIPIF1<0或SKIPIF1<0時,其系數(shù)最大,則最大系數(shù)為SKIPIF1<0,故答案為:462.10.已知SKIPIF1<0的展開式中SKIPIF1<0的系數(shù)是20,則實數(shù)SKIPIF1<0__________.【答案】2【詳解】解:因為SKIPIF1<0則展開式中SKIPIF1<0的系數(shù)是SKIPIF1<0,求得SKIPIF1<0.故答案為:2.11.SKIPIF1<0的二項展開式中SKIPIF1<0的系數(shù)為______.【答案】80【詳解】SKIPIF1<0的二項展開式中含SKIPIF1<0的項為SKIPIF1<0,所以SKIPIF1<0的系數(shù)為SKIPIF1<0.故答案為:SKIPIF1<012.若SKIPIF1<0的展開式中SKIPIF1<0的系數(shù)為10,則SKIPIF1<0______.【答案】SKIPIF1<0【詳解】SKIPIF1<0的通項SKIPIF1<0,所以SKIPIF1<0的展開式中SKIPIF1<0項為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<013.在SKIPIF1<0的二項展開式中,SKIPIF1<0項的系數(shù)是___________.【答案】SKIPIF1<0【詳解】二項式SKIPIF1<0的通項為SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0項的系數(shù)是SKIPIF1<0.故答案為:SKIPIF1<0.14.已知SKIPIF1<0(n是正整數(shù)),SKIPIF1<0,則SKIPIF1<0________.【答案】243【詳解】因為SKIPIF1<0,所以SKIPIF1<0,解得,SKIPIF1<0.令SKIPIF1<0得,SKIPIF1<0,故SKIPIF1<0,故答案為:243.15.在SKIPIF1<0展開式中,含有SKIPIF1<0項的系數(shù)為______.【答案】SKIPIF1<0【詳解】因為SKIPIF1<0的展開式通項為SKIPIF1<0,由題意可知,在SKIPIF1<0展開式中,含有SKIPIF1<0項的系數(shù)為SKIPIF1<0.故答案為:SKIPIF1<0.16.已知常數(shù)SKIPIF1<0,在SKIPIF1<0的二項展開式中,SKIPIF1<0項的系數(shù)等于SKIPIF1<0,則SKIPIF1<0_______.【答案】SKIPIF1<0【詳解】根據(jù)已知條件SKIPIF1<0是二項式展開式的某一項,故得SKIPIF1<0.由SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0.得SKIPIF1<0,根據(jù)已知可得SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0.故答案為:SKIPIF1<0.17.在SKIPIF1<0的二項展開式中SKIPIF1<0項的系數(shù)為______.【答案】35【詳解】由SKIPIF1<0,令SKIPIF1<0,解得:SKIPIF1<0.SKIPIF1<0.得SKIPIF1<0項的系數(shù)為SKIPIF1<0.故答案為:SKIPIF1<018.在SKIPIF1<0的展開式中SKIPIF1<0的系數(shù)為__________.【答案】SKIPIF1<0【詳解】SKIPIF1<0展開式的通項公式為SKIPIF1<0,所以SKIPIF1<0的展開式中含SKIPIF1<0的項等于SKIPIF1<0,故答案為:SKIPIF1<0.19.若SKIPIF1<0的展開式的二項式系數(shù)和為32,則展開式中x的系數(shù)為______.【答案】40【詳解】依題意SKIPIF1<0的展開式的二項式系數(shù)和為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.二項式SKIPIF1<0展開式的通項公式為SKIPIF1<0SKIPIF1<0.令SKIPIF1<0,所以x的系數(shù)為SKIPIF1<0.故答案為:SKIPIF1<020.已知SKIPIF1<0的展開式中,僅有第5項的二項式系數(shù)最大,則展開式中有理項的個數(shù)為___________.【答案】2【詳解】SKIPIF1<0的展開式有SKIPIF1<0項,因為僅有第5項的二項式系數(shù)最大,所以SKIPIF1<0SKIPIF1<0當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,符合題意所以展開式中有理項的個數(shù)為2故答案為:221.已知SKIPIF1<0且滿足SKIPIF1<0能被8整除,則符合條件的一個SKIPIF1<0的值為___________.【答案】5(答案不唯一)【詳解】由已知得SKIPIF1<0SKIPIF1<0,由已知SKIPIF1<0且滿足SKIPIF1<0能被8整除,則SKIPIF1<0是8的整數(shù)倍,所以SKIPIF1<0(SKIPIF1<0),則符合條件的一個SKIPIF1<0的值為5.故答案為:SKIPIF1<0(答案不唯一)22.SKIPIF1<0的展開式中SKIPIF1<0的系數(shù)為______(用數(shù)字作答).【答案】-800【詳解】由題意知,在SKIPIF1<0的展開式中取第4項,即SKIPIF1<0,SKIPIF1<0的展開式中取第2項,即SKIPIF1<0,故SKIPIF1<0的系數(shù)為SKIPIF1<0.故答案為:-80023.己知SKIPIF1<0,則SKIPIF1<0________.(用數(shù)字作案)【答案】34【詳解】令SKIPIF1<0,得SKIPIF1<0;令SKIPIF1<0,得SKIP
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 勞動合同勞務(wù)合同范例
- 公司合并協(xié)議合同范本
- 全職合同范本
- 醫(yī)院物業(yè)招聘合同范本
- 加盟快遞押金合同范本
- 單位電線更換維修合同范本
- 聲學(xué)顧問合同范本
- 單位車棚工程合同范本
- cpvc管購買合同范本
- ul認證合同范本
- 2025電力物資檢儲配一體化建設(shè)技術(shù)導(dǎo)則
- 新學(xué)期 開學(xué)第一課 主題班會課件
- 民法典合同編講座
- 2024年青島港灣職業(yè)技術(shù)學(xué)院高職單招語文歷年參考題庫含答案解析
- 廣西壯族自治區(qū)公路發(fā)展中心2025年面向社會公開招聘657名工作人員高頻重點提升(共500題)附帶答案詳解
- 大學(xué)轉(zhuǎn)專業(yè)高等數(shù)學(xué)試卷
- DBJ51-T 198-2022 四川省既有民用建筑結(jié)構(gòu)安全隱患排查技術(shù)標準
- 公司廠區(qū)保潔培訓(xùn)
- 江蘇省招標中心有限公司招聘筆試沖刺題2025
- 2024年防盜門銷售合同范本
- 支付令申請書(2025版)
評論
0/150
提交評論