江西省景德鎮(zhèn)市樂(lè)平私立新時(shí)代中學(xué)2022-2023學(xué)年高三數(shù)學(xué)文聯(lián)考試題含解析_第1頁(yè)
江西省景德鎮(zhèn)市樂(lè)平私立新時(shí)代中學(xué)2022-2023學(xué)年高三數(shù)學(xué)文聯(lián)考試題含解析_第2頁(yè)
江西省景德鎮(zhèn)市樂(lè)平私立新時(shí)代中學(xué)2022-2023學(xué)年高三數(shù)學(xué)文聯(lián)考試題含解析_第3頁(yè)
江西省景德鎮(zhèn)市樂(lè)平私立新時(shí)代中學(xué)2022-2023學(xué)年高三數(shù)學(xué)文聯(lián)考試題含解析_第4頁(yè)
江西省景德鎮(zhèn)市樂(lè)平私立新時(shí)代中學(xué)2022-2023學(xué)年高三數(shù)學(xué)文聯(lián)考試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江西省景德鎮(zhèn)市樂(lè)平私立新時(shí)代中學(xué)2022-2023學(xué)年高三數(shù)學(xué)文聯(lián)考試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.(5分)等差數(shù)列{an}中,a6=2,S5=30,則S8=()A.31B.32C.33D.34參考答案:B【考點(diǎn)】:等差數(shù)列的性質(zhì).【專題】:等差數(shù)列與等比數(shù)列.【分析】:由S5=30求得a3=6,再由S8==4(a3+a6),運(yùn)算求得結(jié)果.解:∵a6=2,S5=30==5a3,∴a3=6.故S8==4(a3+a6)=32,故選B.【點(diǎn)評(píng)】:本題考查了等差數(shù)列的性質(zhì),恰當(dāng)?shù)剡\(yùn)用性質(zhì),可有效地簡(jiǎn)化計(jì)算.利用了若{an}為等差數(shù)列,當(dāng)m+n=p+q(m,n,p,q∈N+)時(shí),am+an=ap+aq,屬于中檔題.2.一個(gè)幾何體的三視圖如圖所示(單位長(zhǎng)度:cm),則此幾何體的表面積是(

)A.(80+16)cm2 B.84cm2 C.(96+16)cm2 D.96cm2參考答案:A【考點(diǎn)】由三視圖求面積、體積.【專題】計(jì)算題.【分析】由幾何體的三視圖,知該幾何體上面是一個(gè)正四棱錐,四棱錐的底面是邊長(zhǎng)為4的正方形,高是2,根據(jù)勾股定理做出斜高,得到側(cè)面積,下面是一個(gè)棱長(zhǎng)是4的正方體,得到正方體5個(gè)面的面積,最后求和得到結(jié)果.【解答】解:由三視圖知,幾何體是一個(gè)組合體,上面是一個(gè)正四棱錐,四棱錐的底面是邊長(zhǎng)為4的正方形,高是2,∴斜高是=2,∴四棱錐的側(cè)面積是4××4×2=16.下面是一個(gè)棱長(zhǎng)是4的正方體,表面積是5×4×4=80,∴幾何體的表面積是16+80cm2.故選A.【點(diǎn)評(píng)】本題考查由三視圖求幾何體的體積,考查由三視圖還原幾何圖形的直觀圖,本題是一個(gè)基礎(chǔ)題,這種題目一般不會(huì)進(jìn)行線面關(guān)系的證明,而只是用來(lái)求體積和面積.3.在極坐標(biāo)系中,定點(diǎn),動(dòng)點(diǎn)在直線上運(yùn)動(dòng),當(dāng)線段最短時(shí),動(dòng)點(diǎn)的極坐標(biāo)是

A.

B.

C.

D.參考答案:B略4.已知某生產(chǎn)廠家的年利潤(rùn)(單位:萬(wàn)元)與年產(chǎn)量(單位:萬(wàn)件)的函數(shù)關(guān)系式為,則使該生產(chǎn)廠家獲取最大年利潤(rùn)的年產(chǎn)量為(

A.13萬(wàn)件

B.11萬(wàn)件

C.9萬(wàn)件

D.7萬(wàn)件參考答案:C5.已知△ABC所在平面上的動(dòng)點(diǎn)M滿足,則M點(diǎn)的軌跡過(guò)△ABC的(

)A.外心

B.

內(nèi)心

C.重心

D.垂心參考答案:A6.設(shè)函數(shù)f(x)是R上的奇函數(shù),f(x+π)=﹣f(x),當(dāng)0≤x≤時(shí),f(x)=cosx﹣1,則﹣2π≤x≤2π時(shí),f(x)的圖象與x軸所圍成圖形的面積為()A.4π﹣8 B.2π﹣4 C.π﹣2 D.3π﹣6參考答案:A【考點(diǎn)】定積分在求面積中的應(yīng)用.【分析】根據(jù)函數(shù)的奇偶性得到函數(shù)的周期是2π,分別求出函數(shù)的解析式,利用積分的應(yīng)用即可得到結(jié)論【解答】解:由f(x+π)=﹣f(x)得f(x+2π)=f(x),即函數(shù)的周期是2π,若﹣≤x≤0,則0≤﹣x≤,即f(﹣x)=cos(﹣x)﹣1=cosx﹣1,∵f(x)是R上的奇函數(shù),∴f(﹣x)=cosx﹣1=﹣f(x),即f(x)=1﹣cosx,﹣≤x≤0,∵函數(shù)的周期是2π,∴當(dāng)<x≤2π時(shí),﹣<x﹣2π≤0,即f(x)=f(x﹣2π)=1﹣cos(x﹣2π)=1﹣cosx,當(dāng)<x≤π時(shí),﹣<x﹣π≤0,即f(x)=﹣f(x﹣π)=cos(x﹣π)﹣1=﹣cosx﹣1,當(dāng)π<x≤時(shí),0≤x﹣π≤,即f(x)=﹣f(x﹣π)=﹣cos(x﹣π)+1=cosx+1,綜上:f(x)=,則由積分的公式和性質(zhì)可知當(dāng)﹣2π≤x≤2π時(shí),f(x)的圖象與x軸所圍成圖形的面積S=2=4=8=8||=8(x﹣sinx)|=4π﹣8.故選A.7.若的展開(kāi)式中,各項(xiàng)系數(shù)的和與各項(xiàng)二項(xiàng)式系數(shù)的和之比為64,則n=(

)A.4

B.5

C.6

D.7參考答案:C【知識(shí)點(diǎn)】二項(xiàng)式定理的應(yīng)用.J3令中x為1,可得各項(xiàng)系數(shù)和為,又展開(kāi)式的各項(xiàng)二項(xiàng)式系數(shù)和為,∵各項(xiàng)系數(shù)的和與各項(xiàng)二項(xiàng)式系數(shù)的和之比為64,∴,解得n=6,故選:C.【思路點(diǎn)撥】本題對(duì)于二項(xiàng)式系數(shù)的和可以通過(guò)賦值令x=1來(lái)求解,而各項(xiàng)二項(xiàng)式系數(shù)之和由二項(xiàng)式系數(shù)公式可知為,最后通過(guò)比值關(guān)系為64即可求出n的值.8.下列命題中正確命題的個(gè)數(shù)是(

)(1)是的充分必要條件;(2)若且,則;

(3)若將一組樣本數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上同一個(gè)常數(shù)后,則樣本的方差不變;(4)設(shè)隨機(jī)變量服從正態(tài)分布N(0,1),若,則A.4

B.3

C.2

D.1參考答案:C略9.函數(shù)的圖象如圖所示,為了得到g(x)=cos2x的圖象,則只需將f(x)的圖象()A.向右平移個(gè)單位長(zhǎng)度 B.向右平移個(gè)單位長(zhǎng)度C.向左平移個(gè)單位長(zhǎng)度 D.向左平移個(gè)單位長(zhǎng)度參考答案:C【考點(diǎn)】函數(shù)y=Asin(ωx+φ)的圖象變換.【分析】由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得f(x)的解析式,再利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.【解答】解:根據(jù)函數(shù)的圖象,可得A=1,?=﹣,∴ω=2.再根據(jù)五點(diǎn)法作圖可得2?+φ=π,求得φ=,∴f(x)=sin(2x+).故把f(x)=sin(2x+)的圖象向左平移個(gè)單位,可得g(x)=sin[2(x+)+]=cos2x的圖象,故選:C.10.下列不等式一定成立的是(

)A.

B.C.

D.參考答案:C二、填空題:本大題共7小題,每小題4分,共28分11.若雙曲線與有相同的焦點(diǎn),則實(shí)數(shù)m=_________.參考答案:4【分析】結(jié)合雙曲線的幾何性質(zhì),得到,即可求解,得到答案.【詳解】由題意,雙曲線與有相同的焦點(diǎn),可得,解得.故答案為:4.【點(diǎn)睛】本題主要考查了雙曲線的標(biāo)準(zhǔn)方程及幾何性質(zhì)的應(yīng)用,其中解答中熟練應(yīng)用雙曲線的幾何性質(zhì)是解答的關(guān)鍵,著重考查了計(jì)算能力,屬于基礎(chǔ)題.12.不等式的解為.參考答案:{x|0<x<1}【考點(diǎn)】一元二次不等式的解法.【專題】計(jì)算題.【分析】利用兩個(gè)數(shù)的商是正數(shù)等價(jià)于兩個(gè)數(shù)同號(hào);將已知的分式不等式轉(zhuǎn)化為整式不等式組,求出解集.【解答】解:同解于x(x﹣1)<0所以不等式的解集為{x|0<x<1}故答案為{x|0<x<1}【點(diǎn)評(píng)】本題考查解分式不等式時(shí),利用等價(jià)變形轉(zhuǎn)化為整式不等式解.13.設(shè)均為正實(shí)數(shù),且,則的最小值為

.參考答案:16略14.在一個(gè)數(shù)列中,如果對(duì)任意,都有為常數(shù),那么這個(gè)數(shù)列叫做等積數(shù)列,叫做這個(gè)數(shù)列的公積.已知數(shù)列是等積數(shù)列,且,公積為,記的前項(xiàng)和為,則:(1)

.(2)

.參考答案:2

;

470015.設(shè)正三棱柱的所有頂點(diǎn)都在一個(gè)球面上,且該正三棱柱的底面邊長(zhǎng)為,側(cè)棱長(zhǎng)為2,則該球的表面積為_(kāi)_______.參考答案:8π略16.設(shè)集合M={0,1,2},N={x|x2﹣3x+2≤0},則M∩N=.參考答案:{1,2}【考點(diǎn)】交集及其運(yùn)算.【專題】計(jì)算題;集合.【分析】求出N中不等式的解集確定出N,找出M與N的交集即可.【解答】解:由N中不等式變形得:(x﹣1)(x﹣2)≤0,解得:1≤x≤2,即N=[1,2],∵M(jìn)={0,1,2},∴M∩N={1,2},故答案為:{1,2}【點(diǎn)評(píng)】此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.17.已知圓C:(x﹣2)2+(y﹣1)2=1,點(diǎn)P為直線x+2y﹣9=0上一動(dòng)點(diǎn),過(guò)點(diǎn)P向圓C引兩條切線PA,PB,其中A,B為切點(diǎn),則的取值范圍為.參考答案:(0,]【考點(diǎn)】J9:直線與圓的位置關(guān)系.【分析】設(shè)∠APC=2θ,用θ表示出,求出θ的范圍即可得出的范圍.【解答】解:設(shè)∠APB=2θ,則PA=PB=,當(dāng)OP取得最小值時(shí),θ取得最大值.圓心C(2,1)到直線x+2y﹣9=0的距離為=,圓的半徑為r=1,∴sinθ的最大值為=,∴≤cosθ<1.∵≤2cos2θ﹣1<1,即≤cos2θ<1.=cos2θ=?cos2θ.設(shè)cos2θ=t,f(t)==,則f′(t)=,令f′(t)=0得t=﹣1+或t=﹣1﹣,∴f(t)在[,1)上單調(diào)遞增,∴f(t)的最大值為f()=,又f(1)=0,∴0<f(t)≤.故答案為(0,].三、解答題:本大題共5小題,共72分。解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟18.已知函數(shù)f(x)=ax3+bx2lnx,若f(x)在點(diǎn)(1,f(1))處的切線方程為y=2x﹣2.(1)求f(x)的解析式;(2)求f(x)在[,e]上的單調(diào)區(qū)間和最值;(3)若存在實(shí)數(shù)m∈[﹣2,2],函數(shù)g(x)=x3﹣(2m+n)x在(1,e)上為單調(diào)減函數(shù),求實(shí)數(shù)n的取值范圍.參考答案:【考點(diǎn)】利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值.【專題】導(dǎo)數(shù)的綜合應(yīng)用.【分析】(1)由題意利用導(dǎo)數(shù)的幾何意義可得,解得a,b即可.(2)利用導(dǎo)數(shù)的運(yùn)算法則可得f′(x).令f′(x)=0,解得x.分別解出f′(x)>0與f′(x)<0,列出表格即可得出其單調(diào)區(qū)間及其最值.(3)求出g′(x),由題意可知g(x)在(1,e)上為單調(diào)減函數(shù),可得:g′(x)≤0恒成立,即2m+n≥2x2lnx.于是.可得n≥﹣2m+2e2.由存在實(shí)數(shù)m∈[﹣2,2],使得上式成立,可得n≥(﹣2m+2e2)min,即可得出n的取值范圍.解:(1)f′(x)=3ax2+2bxlnx+bx,(x>0).∵f(x)在點(diǎn)(1,f(1))處的切線方程為y=2x﹣2,∴,解得,∴f(x)=2x2lnx.(2)由(1)可知:f′(x)=4xlnx+2x=2x(2lnx+1),令f′(x)=0,解得.

xf′(x)﹣0+f(x)單調(diào)遞減極小值單調(diào)遞增由表格可知:f(x)在[,e]上的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.最小值為=﹣,又=,f(e)=2e2,故最大值為2e2.(3),由題意可知g(x)在(1,e)上為單調(diào)減函數(shù),∴g′(x)≤0恒成立,即2x2lnx﹣(2m+n)≤0,∴2m+n≥2x2lnx.∴.∴n≥﹣2m+2e2.∵存在實(shí)數(shù)m∈[﹣2,2],使得上式成立,∴n≥(﹣2m+2e2)min=﹣4+2e2,∴n的取值范圍是[﹣4+2e2,+∞).【點(diǎn)評(píng)】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、切線方程、恒成立問(wèn)題的等價(jià)轉(zhuǎn)化等基礎(chǔ)知識(shí)與基本技能,屬于難題.19.已知函數(shù)的定義域?yàn)镽,對(duì)任意的都滿足,當(dāng)時(shí),.

(1)判斷并證明的單調(diào)性和奇偶性

(2)是否存在這樣的實(shí)數(shù)m,當(dāng)時(shí),使不等式

對(duì)所有恒成立,如存在,求出m的取值范圍;若不存在,說(shuō)明理由.參考答案:解析:(1)令

即為奇函數(shù)

在R上任取,由題意知

故是增函數(shù)

(2)要使

只須

又由為單調(diào)增函數(shù)有令原命題等價(jià)于恒成立令上為減函數(shù),時(shí),原命題成立.20.已知極坐標(biāo)的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)處,極軸與軸的正半軸重合,且長(zhǎng)度單位相同.直線的極坐標(biāo)方程為:,點(diǎn),參數(shù).(Ⅰ)求點(diǎn)軌跡的直角坐標(biāo)方程;(Ⅱ)求點(diǎn)到直線距離的最大值.

參考答案:略21.設(shè)函數(shù)⑴若時(shí),解不等式;⑵如果對(duì)于任意的,,求的取值范圍。

參考答案:解:⑴因?yàn)楹瘮?shù),所以時(shí)不等式即,由絕對(duì)值的幾何意義易知解為。⑵因?yàn)閷?duì)任意的都有,即需對(duì)任意的都有也就是需要與之間距離,所以即可所以的取值范圍是。

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論