版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
專題13全等模型-倍長中線與截長補短模型全等三角形在中考數學幾何模塊中占據著重要地位,也是學生必須掌握的一塊內容,本專題就全等三角形中的重要模型(倍長中線模型、截長補短模型)進行梳理及對應試題分析,方便掌握。模型1.倍長中線模型【模型解讀】中線是三角形中的重要線段之一,在利用中線解決幾何問題時,常常采用“倍長中線法”添加輔助線.所謂倍長中線法,就是將三角形的中線延長一倍,以便構造出全等三角形,從而運用全等三角形的有關知識來解決問題的方法.(注:一般都是原題已經有中線時用,不太會有自己畫中線的時候)。【常見模型及證法】1、基本型:如圖1,在三角形ABC中,AD為BC邊上的中線.證明思路:延長AD至點E,使得AD=DE.若連結BE,則;若連結EC,則;2、中點型:如圖2,為的中點.證明思路:若延長至點,使得,連結,則;若延長至點,使得,連結,則.3、中點+平行線型:如圖3,,點為線段的中點.證明思路:延長交于點(或交延長線于點),則.例1.(2023·江蘇徐州·模擬預測)(1)閱讀理解:如圖①,在中,若,,求邊上的中線的取值范圍.可以用如下方法:將繞著點逆時針旋轉得到,在中,利用三角形三邊的關系即可判斷中線的取值范圍是______;(2)問題解決:如圖②,在中,是邊上的中點,于點,交于點,交于點,連接,求證:;(3)問題拓展:如圖③,在四邊形中,,,,以為頂點作一個的角,角的兩邊分別交、于、兩點,連接,探索線段,,之間的數量關系,并說明理由.例2.(2023·貴州畢節(jié)·二模)課外興趣小組活動時,老師提出了如下問題:(1)如圖1,△ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.小明在組內經過合作交流,得到了如下的解決方法:延長AD到點E,使DE=AD,請根據小明的方法思考幫小明完成解答過程.(2)如圖2,AD是△ABC的中線,BE交AC干E,交AD于F,且AE=EF.請判昕AC與BF的數量關系,并說明理由.例3.(2022·山東·安丘市一模)閱讀材料:如圖1,在中,D,E分別是邊AB,AC的中點,小亮在證明“三角形的中位線平行于第三邊,且等于第三邊的一半”時,通過延長DE到點F,使,連接CF,證明,再證四邊形DBCF是平行四邊形即得證.類比遷移:(1)如圖2,AD是的中線,E是AC上的一點,BE交AD于點F,且,求證:.小亮發(fā)現可以類比材料中的思路進行證明.證明:如圖2,延長AD至點M,使,連接MC,……請根據小亮的思路完成證明過程.方法運用:(2)如圖3,在等邊中,D是射線BC上一動點(點D在點C的右側),連接AD.把線段CD繞點D逆時針旋轉120°得到線段DE,F是線段BE的中點,連接DF、CF.請你判斷線段DF與AD的數量關系,并給出證明.例4.(2022·河南商丘·一模)閱讀材料如圖1,在△ABC中,D,E分別是邊AB,AC的中點,小明在證明“三角形的中位線平行于第三邊,且等于第三邊的一半”時,通過延長DE到點F,使EF=DE,連接CF,證明△ADE≌△CFE,再證四邊形DBCF是平行四邊形即得證.(1)類比遷移:如圖2,AD是△ABC的中線,BE交AC于點E,交AD于點F,且AE=EF,求證:AC=BF.小明發(fā)現可以類比材料中的思路進行證明.證明:如圖2,延長AD至點M,使MD=FD,連接MC,……請根據小明的思路完成證明過程.(2)方法運用:如圖3,在等邊△ABC中,D是射線BC上一動點(點D在點C的右側),連接AD.把線段CD繞點D逆時針旋轉120°得到線段DE.F是線段BE的中點,連接DF,CF.請你判斷線段DF與AD的數量關系,并給出證明;模型2.截長補短模型【模型解讀】截長補短的方法適用于求證線段的和差倍分關系。該類題目中常出現等腰三角形、角平分線等關鍵詞句,可以采用截長補短法構造全等三角形來完成證明過程,截長補短法(往往需證2次全等)。截長:指在長線段中截取一段等于已知線段;補短:指將短線段延長,延長部分等于已知線段?!境R娔P图白C法】(1)截長:在較長線段上截取一段等于某一短線段,再證剩下的那一段等于另一短線段。例:如圖,求證BE+DC=AD方法:=1\*GB3①在AD上取一點F,使得AF=BE,證DF=DC;=2\*GB3②在AD上取一點F,使DF=DC,證AF=BE(2)補短:將短線段延長,證與長線段相等例:如圖,求證BE+DC=AD方法:=1\*GB3①延長DC至點M處,使CM=BE,證DM=AD;=2\*GB3②延長DC至點M處,使DM=AD,證CM=BE例1.(2023·重慶·九年級專題練習)如圖,已知AD∥BC,∠PAB的平分線與∠CBA的平分線相交于E,CE的連線交AP于D.求證:AD+BC=AB.例2.(2023·廣東肇慶·??家荒#┱n堂上,老師提出了這樣一個問題:如圖1,在中,平分交于點D,且,求證:,小明的方法是:如圖2,在上截取,使,連接,構造全等三角形來證明.(1)小天提出,如果把小明的方法叫做“截長法”,那么還可以用“補短法”通過延長線段構造全等三角形進行證明.輔助線的畫法是:延長至F,使=______,連接請補全小天提出的輔助線的畫法,并在圖1中畫出相應的輔助線;(2)小蕓通過探究,將老師所給的問題做了進一步的拓展,給同學們提出了如下的問題:如圖3,點D在的內部,分別平分,且.求證:.請你解答小蕓提出的這個問題(書寫證明過程);(3)小東將老師所給問題中的一個條件和結論進行交換,得到的命題如下:如果在中,,點D在邊上,,那么平分小東判斷這個命題也是真命題,老師說小東的判斷是正確的.請你利用圖4對這個命題進行證明.例3.(2023·廣西·九年級專題練習)在四邊形ABDE中,C是BD邊的中點.(1)如圖(1),若AC平分∠BAE,∠ACE=90°,則線段AE、AB、DE的長度滿足的數量關系為;(直接寫出答案);(2)如圖(2),AC平分∠BAE,EC平分∠AED,若∠ACE=120°,則線段AB、BD、DE、AE的長度滿足怎樣的數量關系?寫出結論并證明.例4.(2023·廣東·九年級期末)(1)閱讀理解:問題:如圖1,在四邊形中,對角線平分,.求證:.思考:“角平分線+對角互補”可以通過“截長、補短”等構造全等去解決問題.方法1:在上截取,連接,得到全等三角形,進而解決問題;方法2:延長到點,使得,連接,得到全等三角形,進而解決問題.結合圖1,在方法1和方法2中任選一種,添加輔助線并完成證明.(2)問題解決:如圖2,在(1)的條件下,連接,當時,探究線段,,之間的數量關系,并說明理由;(3)問題拓展:如圖3,在四邊形中,,,過點D作,垂足為點E,請直接寫出線段、、之間的數量關系.課后專項訓練:1.(2023秋·福建福州·九年級校考階段練習)如圖,在△ABC中,AB=4,AC=2,點D為BC的中點,則AD的長可能是()A.1 B.2 C.3 D.42.(2022·浙江湖州·二模)如圖,在四邊形中,,,,,,點是的中點,則的長為(
).A.2 B. C. D.33.(2022·廣東湛江·??级#┮阎喝鐖D,中,E在上,D在上,過E作于F,,,,則的長為___________.4.(2023秋·江西九江·八年級??计谀┤鐖D,在△ABC中,點D是BC的中點,若AB=5,AC=13,AD=6,則BC的長為.5.(2023秋·湖北武漢·八年級??茧A段練習)(1)閱讀理解:如圖1,在中,若,.求邊上的中線的取值范圍,小聰同學是這樣思考的:延長至,使,連接.利用全等將邊轉化到,在中利用三角形三邊關系即可求出中線的取值范圍,在這個過程中小聰同學證三角形全等用到的判定方法是___________,中線的取值范圍是___________;(2)問題解決:如圖2,在中,點是的中點,.交于點,交于點.求證:;(3)問題拓展:如圖3,在中,點是的中點,分別以為直角邊向外作和,其中,,,連接,請你探索與的數量與位置關系.
6.(2023·黑龍江大慶·統(tǒng)考三模)如圖,四邊形中,°,為邊上一點,連接,,為的中點,延長交的延長線于點,交于點,連接交于點.(1)求證;(2)若,,求證:四邊形為矩形.
7.(2023·廣東云浮·八年級統(tǒng)考期中)(1)閱讀理解:如圖①,在中,若,求邊上的中線的取值范圍.可以用如下方法:將繞著點D逆時針旋轉得到,在中,利用三角形三邊的關系即可判斷中線的取值范圍是_______;(2)問題解決:如圖②,在中,D是邊上的中點,于點D,交于點E,DF交于點F,連接,求證:;(3)問題拓展:如圖③,在四邊形中,,,,以C為頂點作一個的角,角的兩邊分別交于E、F兩點,連接EF,探索線段之間的數量關系,并說明理由.8.(2023·江蘇·九年級假期作業(yè))(1)如圖1,AD是△ABC的中線,延長AD至點E,使ED=AD,連接CE.①證明△ABD≌△ECD;②若AB=5,AC=3,設AD=x,可得x的取值范圍是_______;(2)如圖2,在△ABC中,D是BC邊上的中點,DE⊥DF,DE交AB于點E,DF交AC于點F,連接EF,求證:BE+CF>EF.9.(2022秋·北京昌平·九年級校聯考期中)如圖,O為四邊形ABCD內一點,E為AB的中點,OA=OD,OB=OC,∠AOB+∠COD=.(1)若∠BOE=∠BAO,AB=,求OB的長;(2)用等式表示線段OE和CD之間的關系,并證明.10.(2022秋·安徽·九年級校聯考階段練習)安安利用兩張正三角形紙片,進行了如下探究:
【探究證明】(1)如圖1,和均為等邊三角形,連接交延長線于點,求證:;【拓展延伸】(2)如圖2,在正三角形紙片的邊上取一點,作交外角平分線于點,探究,和的數量關系,并證明;【思維提升】(3)如圖3,和均為正三角形,當,,三點共線時,連接,若,直接寫出下列兩式分別是否為定值,并任選其中一個進行證明:①;②.11.(2023秋·河南駐馬店·八年級統(tǒng)考期末)(1)閱讀理解:問題:如圖1,在四邊形中,對角線平分,.求證:.思考:“角平分線+對角互補”可以通過“截長、補短”等構造全等去解決問題.方法1:在上截取,連接,得到全等三角形,進而解決問題;方法2:延長到點,使得,連接,得到全等三角形,進而解決問題.結合圖1,在方法1和方法2中任選一種,添加輔助線并完成證明.(2)問題解決:如圖2,在(1)的條件下,連接,當時,探究線段,,之間的數量關系,并說明理由;(3)問題拓展:如圖3,在四邊形中,,,過點作,垂足為點,請寫出線段、、之間的數量關系并說明理由.12.(2023·浙江衢州·??家荒#┤鐖D1,在中,,平分,連接,,.(1)求的度數;(2)如圖2,連接,交于E,連接,求證:;(3)如圖3,在(2)的條件下,點G為的中點,連接交于點F,若,求線段的長.13.(2023春·廣東·九年級專題練習)課堂上,老師提出了這樣一個問題:如圖1,在中,平分交于點D,且,求證:,小明的方法是:如圖2,在上截取,使,連接,構造全等三角形來證明.(1)小天提出,如果把小明的方法叫做“截長法”,那么還可以用“補短法”通過延長線段構造全等三角形進行證明.輔助線的畫法是:延長至F,使=______,連接請補全小天提出的輔助線的畫法,并在圖1中畫出相應的輔助線;(2)小蕓通過探究,將老師所給的問題做了進一步的拓展,給同學們提出了如下的問題:如圖3,點D在的內部,分別平分,且.求證:.請你解答小蕓提出的這個問題(書寫證明過程);(3)小東將老師所給問題中的一個條件和結論進行交換,得到的命題如下:如果在中,,點D在邊上,,那么平分小東判斷這個命題也是真命題,老師說小東的判斷是正確的.請你利用圖4對這個命題進行證明.14.(2023春·廣東深圳·九年級??计谥校┤鐖D,△ABC為等邊三角形,直線l過點C,在l上位于C點右側的點D滿足∠BDC=60°。(1)如圖1,在l上位于C點左側取一點E,使∠AEC=60°,求證:△AEC≌△CDB;(2)如圖2,點F、G在直線l上,連AF,在l上方作∠AFH=120°,且AF=HF,∠HGF=120°,求證:HG+BD=CF;(3)在(2)的條件下,當A、B位于直線l兩側,其余條件不變時(如圖3),線段HG、CF、BD的數量關系為.15.(2022·河南·模擬預測)(1)如圖①,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分別是BC、CD上的點,且∠EAF=60°,探究圖中線段BE、EF、FD之間的數量關系.某同學做了如下探究,延長FD到點G,使DG=BE,連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結論,他的結論應該是______.(2)如圖②,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E、F分別是BC、CD上的點,且∠EAF=∠BAD,上述結論是否依然成立?若成立,請說明理由;若不成立,寫出正確的結論,并說明理由.(3)如圖③,在某次軍事演習中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動指令后,艦艇甲向正東方向以60海里/時的速度前進,艦艇乙沿北偏東50°的方向以80海里/時的速度前進1.5小時后,指揮中心觀測到甲、乙兩艦艇分別到達E、F處,且兩艦艇之間的夾角為70°,試求此時兩艦艇之間的距離.16.(2022·河南·九年級期中)課外興趣小組活動時,老師提出了如下問題:如圖1,在△ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.小明在組內經過合作交流,得到了如下的解決方法:延長AD到E,使得DE=AD,再連接BE(或將△ACD繞點D逆時針旋轉180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三邊關系可得2<AE<8,則1<AD<4.【感悟】解題時,條件中若出現中點、中線字樣,可以考慮構造以中點為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結論集中到同一個三角形中.【解決問題】受到(1)的啟發(fā),請你證明下列命題:如圖2,在△ABC中,D是BC邊上的中點,DE⊥DF,DE交AB于點E,DF交AC于點F,連接EF.(1)求證:BE+CF>EF,(2)若∠A=90°,探索線段BE、CF、EF之間的等量關系,并加以證明.、17.(2022·山東東營·中考真題)已知點O是線段AB的中點,點P是直線l上的任意一點,分別過點A和點B作直線l的垂線,垂足分別為點C和點D.我們定義垂足與中點之間的距離為“足中距”.(1)[猜想驗證]如圖1,當點P與點O重合時,請你猜想、驗證后直接寫出“足中距”O(jiān)C和OD的數量關系是________.(2)[探究證明]如圖2,當點P是線段AB上的任意一點時,“足中距”O(jiān)C和OD的數量關系是否依然成立,若成立,請給出證明;若不成立,請說明理由.(3)[拓展延伸]如圖3,當點P是線段BA延長線上的任意一點時,“足中距”O(jiān)C和OD的數量關系是否依然成立,若成立,請給出證明;若不成立,請說明理由;18.(2022·北京·中考真題)在中,,D為內一點,連接,,延長到點,使得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版小額貸款抵押合同資產評估及報告協議2篇
- 2025年度個人與公司租賃房屋修繕責任合同4篇
- 2025年度個人旅游規(guī)劃與導游服務合同2篇
- 2025版室外照明燈具廣告宣傳與品牌推廣合同3篇
- 2025年度煤炭行業(yè)綠色運輸體系構建合同4篇
- 2025標準新能源材料研發(fā)與采購合作協議3篇
- 2025年度生態(tài)環(huán)保瓷磚批量采購合作協議3篇
- 2025版醫(yī)療健康大數據合作開發(fā)合同3篇
- 個性化定制小區(qū)房產買賣合同(2024版)版B版
- 2025版國際貿易糾紛訴訟擔保委托服務協議3篇
- 五年級上冊寒假作業(yè)答案(人教版)
- 2025年山東浪潮集團限公司招聘25人高頻重點提升(共500題)附帶答案詳解
- 2024年財政部會計法律法規(guī)答題活動題目及答案一
- 2025年江西省港口集團招聘筆試參考題庫含答案解析
- (2024年)中國傳統(tǒng)文化介紹課件
- 液化氣安全檢查及整改方案
- 《冠心病》課件(完整版)
- 2024年云網安全應知應會考試題庫
- 公園保潔服務投標方案
- 光伏電站項目合作開發(fā)合同協議書三方版
- 2024年秋季新滬教版九年級上冊化學課件 第2章 空氣與水資源第1節(jié) 空氣的組成
評論
0/150
提交評論