山東省日照市日照第一中學2024屆高二上數(shù)學期末復習檢測模擬試題含解析_第1頁
山東省日照市日照第一中學2024屆高二上數(shù)學期末復習檢測模擬試題含解析_第2頁
山東省日照市日照第一中學2024屆高二上數(shù)學期末復習檢測模擬試題含解析_第3頁
山東省日照市日照第一中學2024屆高二上數(shù)學期末復習檢測模擬試題含解析_第4頁
山東省日照市日照第一中學2024屆高二上數(shù)學期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

山東省日照市日照第一中學2024屆高二上數(shù)學期末復習檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的左、右焦點分別為,,為坐標原點,為雙曲線在第一象限上的點,直線,分別交雙曲線的左,右支于另一點,,若,且,則雙曲線的離心率為()A. B.3C.2 D.2.已知點,則直線的傾斜角為()A. B.C. D.3.“楊輝三角”是中國古代重要的數(shù)學成就,它比西方的“帕斯卡三角形”早了300多年,如圖是由“楊輝三角”拓展而成的三角形數(shù)陣,記為圖中虛線上的數(shù)1,3,6,10,…構成的數(shù)列的第n項,則的值為()A.1225 B.1275C.1326 D.13624.已知隨機變量X的分布列如表所示,則()X123Pa2a3aA. B.C. D.5.直線的傾斜角為()A.-30° B.60°C.150° D.120°6.如圖所示,向量在一條直線上,且則()A. B.C. D.7.如圖,在棱長為2的正方體中,點P在截面上(含邊界),則線段的最小值等于()A. B.C. D.8.有3個興趣小組,甲、乙兩位同學各自參加其中一個小組,每位同學參加各個小組的可能性相同,則這兩位同學參加同一個興趣小組的概率為A. B.C. D.9.數(shù)列中前項和滿足,若是遞增數(shù)列,則的取值范圍為()A. B.C. D.10.若直線與曲線只有一個公共點,則m的取值范圍是()A. B.C.或 D.或11.過橢圓+=1左焦點F1引直線交橢圓于A、B兩點,F(xiàn)2是橢圓的右焦點,則△ABF2的周長是()A.20 B.18C.10 D.1612.數(shù)學家歐拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半.這條直線被后人稱為三角形的歐拉線,已知△的頂點,,且,則△的歐拉線的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某學校為了獲得該校全體高中學生的體有鍛煉情況,按照男、女生的比例分別抽樣調(diào)查了55名男生和45名女生的每周鍛煉時間,通過計算得到男生每周鍛煉時間的平均數(shù)為8小時,方差為6;女生每周鍛煉時間的平均數(shù)為6小時,方差為8.根據(jù)所有樣本的方差來估計該校學生每周鍛煉時間的方差為________14.若不等式的解集為,則________15.設雙曲線C:(a>0,b>0)的一條漸近線為y=x,則C的離心率為_________16.瑞士數(shù)學家歐拉(Euler)1765年在所著的《三角形的幾何學》一書中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線.已知的頂點,,,則歐拉線的方程為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線上的點到焦點的距離為6(1)求拋物線的方程;(2)設為拋物線的焦點,直線與拋物線交于,兩點,求的面積18.(12分)如圖,四棱錐中,底面為正方形,底面,,點,,分別為,,的中點,平面棱(1)試確定的值,并證明你的結論;(2)求平面與平面夾角的余弦值19.(12分)已如空間直角標系中,點都在平面內(nèi),求實數(shù)y的值20.(12分)已知數(shù)列滿足,,數(shù)列前項和為.(1)求數(shù)列,的通項公式;(2)表示不超過的最大整數(shù),如,設的前項和為,令,求證:.21.(12分)已知圓與x軸交于A,B兩點,P是該圓上任意一點,AP,PB的延長線分別交直線于M,N兩點.(1)若弦AP長為2,求直線PB的方程;(2)以線段MN為直徑作圓C,當圓C面積最小時,求此時圓C的方程.22.(10分)已知等比數(shù)列的前項和為,且,.(1)求的通項公式;(2)求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由雙曲線的定義可設,,由平面幾何知識可得四邊形為平行四邊形,三角形,用余弦定理,可得,的方程,再由離心率公式可得所求值【詳解】由雙曲線的定義可得,由,可得,,結合雙曲線性質可以得到,而,結合四邊形對角線平分,可得四邊形為平行四邊形,結合,故,對三角形,用余弦定理,得到,結合,可得,,,代入上式子中,得到,即,結合離心率滿足,即可得出,故選:D【點睛】本題考查求雙曲線的離心率,熟記雙曲線的簡單性質即可,屬于??碱}型.2、A【解析】由兩點坐標,求出直線的斜率,利用,結合傾斜角的范圍即可求解.【詳解】設直線AB的傾斜角為,因為,所以直線AB的斜率,即,因為,所以.故選:A3、B【解析】觀察前4項可得,從而可求得結果【詳解】由題意可得,……,觀察規(guī)律可得,所以,故選:B4、C【解析】根據(jù)分布列性質計算可得;【詳解】解:依題意,解得,所以;故選:C5、C【解析】根據(jù)直線斜率即可得傾斜角.【詳解】設直線的傾斜角為由已知得,所以直線的斜率,由于,故選:C.6、D【解析】根據(jù)向量加法的三角形法則得到化簡得到故答案為D7、B【解析】根據(jù)體積法求得到平面的距離即可得【詳解】由題意的最小值就是到平面的距離正方體棱長為2,則,,設到平面的距離為,由得,解得故選:B8、A【解析】每個同學參加的情形都有3種,故兩個同學參加一組的情形有9種,而參加同一組的情形只有3種,所求的概率為p=選A9、B【解析】由已知求得,再根據(jù)當時,,,可求得范圍.【詳解】解:因為,則,兩式相減得,因為是遞增數(shù)列,所以當時,,解得,又,,所以,解得,綜上得,故選:B.10、D【解析】根據(jù)曲線方程的特征,發(fā)現(xiàn)曲線表示在軸上方的圖象,畫出圖形,根據(jù)圖形上直線的三個特殊位置,當已知直線位于直線位置時,把已知直線的解析式代入橢圓方程中,消去得到關于的一元二次方程,由題意可知根的判別式等于0即可求出此時對應的的值;當已知直線位于直線及直線的位置時,分別求出對應的的值,寫出滿足題意得的范圍,綜上,得到所有滿足題意得的取值范圍【詳解】根據(jù)曲線,得到,解得:;,畫出曲線的圖象,為橢圓在軸上邊的一部分,如圖所示:當直線在直線的位置時,直線與橢圓相切,故只有一個交點,把直線代入橢圓方程得:,得到,即,化簡得:,解得或(舍去),則時,直線與曲線只有一個公共點;當直線在直線位置時,直線與曲線剛好有兩個交點,此時,當直線在直線位置時,直線與曲線只有一個公共點,此時,則當時,直線與曲線只有一個公共點,綜上,滿足題意得的范圍是或故選:D11、A【解析】根據(jù)橢圓的定義求得正確選項.【詳解】依題意,根據(jù)橢圓的定義可知,三角形的周長為.故選:A12、D【解析】由題設條件求出垂直平分線的方程,且△的外心、重心、垂心都在垂直平分線上,結合歐拉線的定義,即垂直平分線即為歐拉線.【詳解】由題設,可得,且中點為,∴垂直平分線的斜率,故垂直平分線方程為,∵,則△的外心、重心、垂心都在垂直平分線上,∴△的歐拉線的方程為.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求出100名學生每周鍛煉的平均時間,然后再求這100名學生每周鍛煉時間的方差,從而可估計該校學生每周鍛煉時間的方差【詳解】由題意可得55名男生和45名女生的每周鍛煉時間的平均數(shù)為小時,因為55名男生每周鍛煉時間的方差為6;45名女生每周鍛煉時間的方差為8,所以這100名學生每周鍛煉時間的方差為,所以該校學生每周鍛煉時間的方差約為,故答案為:14、11【解析】根據(jù)題意得到2與3是方程的兩個根,再根據(jù)兩根之和與兩根之積求出,進而求出答案.【詳解】由題意得:2與3是方程的兩個根,則,,所以.故答案為:1115、【解析】根據(jù)已知可得,結合雙曲線中的關系,即可求解.【詳解】由雙曲線方程可得其焦點在軸上,因為其一條漸近線為,所以,.故答案為:【點睛】本題考查的是有關雙曲線性質,利用漸近線方程與離心率關系是解題的關鍵,要注意判斷焦點所在位置,屬于基礎題.16、【解析】根據(jù)給定信息,利用三角形重心坐標公式求出的重心,再結合對稱性求出的外心,然后求出歐拉線的方程作答.【詳解】因的頂點,,,則的重心,顯然的外心在線段AC中垂線上,設,由得:,解得:,即點,直線,化簡整理得:,所以歐拉線的方程為.故答案:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)焦半徑公式可求,從而可求拋物線的方程.(2)求出的長度后可求的面積.【小問1詳解】因為,所以,故拋物線方程為:.【小問2詳解】設,且,由可得,故或,故,故,故,而到直線的距離為,故的面積為18、(1),證明見解析(2)【解析】(1),利用線面平行的判定和性質可得答案;(2)以為原點,所在直線分別為的正方向建立空間直角坐標系,求出平面的法向量和平面的法向量由向量夾角公式可得答案.【小問1詳解】.證明如下:在△中,因為點分別為的中點,所以//.又平面,平面,所以//平面.因為平面,平面平面,所以//所以//.在△中,因為點為的中點,所以點為的中點,即.【小問2詳解】因為底面為正方形,所以.因為底面,所以,.如圖,建立空間直角坐標系,則,,,因為分別為的中點,所以.所以,.設平面的法向量,則即令,于.又因為平面的法向量為,所以所以平面與平面夾角的余弦值為.19、【解析】方法一:根據(jù)平面向量基本定理即可解出;方法二:先求出平面的一個法向量,再根據(jù)即可求出【詳解】方法一:,由題意知A,B,C,P四點共面,則存在實數(shù),滿足∵,∴∴,而,∴方法二:,設平面的一個法向量為,則,∴取,則,∵,∴,解得20、(1),(2)證明見解析【解析】(1)利用累加法求通項公式,利用通項公式與前n項和公式的關系可求的通項公式;(2)求出并判斷其范圍,求出,利用裂項相消法求的前n項和即可證明.【小問1詳解】由題可知,當n≥2時,=當n=1時,也符合上式,∴;當時,,當n=1時,也符合上式,∴;【小問2詳解】由(1)知,∴,∵,;∵,,,,,∴設為數(shù)列的前n項和,則.21、(1)或;(2).【解析】(1)根據(jù)圓的直徑的性質,結合銳角三角函數(shù)定義進行求解即可;(2)根據(jù)題意,結合基本不等式和圓的標準方程進行求解即可.【小問1詳解】在方程中,令,解得,或,因為AP,PB的延長線分別交直線于M,N兩點,所以,圓心在x軸上,所以,因為,,所以有,當P在x軸上方時,直線PB的斜率為:,所以直線PB的方程為:,當P在x軸下方時,直線PB的斜率為:,所以直線PB的方程為:,因此直線PB的方程為或;【小問2詳解】由(1)知:,,所以設直線的斜率為,因此直線的斜率為,于是直線的方程為:,令,,即直線的方程為:,令,,即,因為同號,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論