版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第四講:函數(shù)概念及其表示【考點(diǎn)梳理】1、函數(shù)與映射的概念函數(shù)映射兩個(gè)集合A、B設(shè)A、B是兩個(gè)非空數(shù)集設(shè)A、B是兩個(gè)非空集合對(duì)應(yīng)關(guān)系按照某種確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng)按某一個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對(duì)應(yīng)名稱稱f:A→B為從集合A到集合B的一個(gè)函數(shù)稱f:A→B為從集合A到集合B的一個(gè)映射記法y=f(x),x∈Af:A→B注意:判斷一個(gè)對(duì)應(yīng)關(guān)系是否是函數(shù)關(guān)系,就看這個(gè)對(duì)應(yīng)關(guān)系是否滿足函數(shù)定義中“定義域內(nèi)的任意一個(gè)自變量的值都有唯一確定的函數(shù)值”這個(gè)核心點(diǎn).2、函數(shù)的定義域、值域在函數(shù)y=f(x),x∈A中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域,與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.3、構(gòu)成函數(shù)的三要素函數(shù)的三要素為定義域、值域、對(duì)應(yīng)關(guān)系.4、函數(shù)的表示方法函數(shù)的表示方法有三種:解析法、列表法、圖象法.解析法:一般情況下,必須注明函數(shù)的定義域;列表法:選取的自變量要有代表性,應(yīng)能反映定義域的特征;圖象法:注意定義域?qū)D象的影響.5、函數(shù)的定義域函數(shù)的定義域是使函數(shù)解析式有意義的自變量的取值范圍,常見基本初等函數(shù)定義域的要求為:(1)分式函數(shù)中分母不等于零.(2)偶次根式函數(shù)的被開方式大于或等于0.(3)一次函數(shù)、二次函數(shù)的定義域均為R.(4)y=x0的定義域是{x|x≠0}.(5)y=ax(a>0且a≠1),y=sinx,y=cosx的定義域均為R.(6)y=logax(a>0且a≠1)的定義域?yàn)?0,+∞).(7)y=tanx的定義域?yàn)镾KIPIF1<0.【典型題型講解】考點(diǎn)一:函數(shù)的概念【典例例題】例1(多選題)下列對(duì)應(yīng)關(guān)系f,能構(gòu)成從集合M到集合N的函數(shù)的是(
)A.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0D.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0【答案】ABD【詳解】對(duì)于A中,集合SKIPIF1<0中的任意一個(gè)元素,按某種對(duì)應(yīng)法則,在集合SKIPIF1<0中存在唯一的元素相對(duì)應(yīng),所以能構(gòu)成從集合SKIPIF1<0到集合SKIPIF1<0的函數(shù);對(duì)于B中,集合SKIPIF1<0中的任意一個(gè)元素,按某種對(duì)應(yīng)法則,在集合SKIPIF1<0中存在唯一的元素相對(duì)應(yīng),所以能構(gòu)成從集合SKIPIF1<0到集合SKIPIF1<0的函數(shù);對(duì)于C中,集合SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),可得SKIPIF1<0,所以不能構(gòu)成從集合SKIPIF1<0到集合SKIPIF1<0的函數(shù);對(duì)于D中,集合SKIPIF1<0中的任一元素,按SKIPIF1<0,在集合SKIPIF1<0有唯一的元素與之對(duì)應(yīng),所以能構(gòu)成從集合SKIPIF1<0到集合SKIPIF1<0的函數(shù).故選:ABD【方法技巧與總結(jié)】函數(shù)概念:注意兩個(gè)非空數(shù)集,任意與唯一兩個(gè)關(guān)鍵字對(duì)應(yīng).【變式訓(xùn)練】1.函數(shù)y=f(x)的圖象與直線SKIPIF1<0的交點(diǎn)個(gè)數(shù)(
)A.至少1個(gè) B.至多1個(gè) C.僅有1個(gè) D.有0個(gè)、1個(gè)或多個(gè)【答案】B【詳解】若1不在函數(shù)f(x)的定義域內(nèi),y=f(x)的圖象與直線SKIPIF1<0沒有交點(diǎn),若1在函數(shù)f(x)的定義域內(nèi),y=f(x)的圖象與直線SKIPIF1<0有1個(gè)交點(diǎn),故選:B.2.已知函數(shù)SKIPIF1<0的定義域和值域都是集合SKIPIF1<0,其定義如表所示,則SKIPIF1<0____________.xSKIPIF1<0012SKIPIF1<0012SKIPIF1<0【答案】SKIPIF1<0解:由表可知,SKIPIF1<0.故答案為:SKIPIF1<0.考點(diǎn)二:具體函數(shù)的定義域【典例例題】例1.函數(shù)SKIPIF1<0的定義域是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】解:SKIPIF1<0,故SKIPIF1<0,解得:SKIPIF1<0,故選:B例2.函數(shù)SKIPIF1<0的定義域?yàn)開__________.【答案】SKIPIF1<0【詳解】由題意可知SKIPIF1<0,而以2為底的對(duì)數(shù)函數(shù)是單調(diào)遞增的,因此SKIPIF1<0,求解可得SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0.【方法技巧與總結(jié)】對(duì)求函數(shù)定義域問題的思路是:(1)先列出使式子SKIPIF1<0有意義的不等式或不等式組;(2)解不等式組;(3)將解集寫成區(qū)間的形式.【變式訓(xùn)練】1.已知集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】函數(shù)SKIPIF1<0有意義,必有SKIPIF1<0,即SKIPIF1<0,于是得SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0.故選:C2.函數(shù)SKIPIF1<0的定義域是_______.【答案】SKIPIF1<0【詳解】由題意可得,SKIPIF1<0,解之得SKIPIF1<0則函數(shù)SKIPIF1<0的定義域是SKIPIF1<0故答案為:SKIPIF1<03.函數(shù)SKIPIF1<0的定義域?yàn)開__________.【答案】SKIPIF1<0【詳解】解:由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,所以函數(shù)的定義域?yàn)镾KIPIF1<0,故答案為:SKIPIF1<0考點(diǎn)三:抽象函數(shù)定義域【典例例題】例1.已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,則函數(shù)SKIPIF1<0的定義域?yàn)椋?/p>
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0且SKIPIF1<0,SKIPIF1<0的定義域?yàn)镾KIPIF1<0.故選:SKIPIF1<0.【方法技巧與總結(jié)】1.抽象函數(shù)的定義域求法:此類型題目最關(guān)鍵的就是法則下的定義域不變,若SKIPIF1<0的定義域?yàn)镾KIPIF1<0,求SKIPIF1<0中SKIPIF1<0的解SKIPIF1<0的范圍,即為SKIPIF1<0的定義域,口訣:定義域指的是SKIPIF1<0的范圍,括號(hào)范圍相同.已知SKIPIF1<0的定義域,求四則運(yùn)算型函數(shù)的定義域2.若函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的,其定義域?yàn)楦骰竞瘮?shù)定義域的交集,即先求出各個(gè)函數(shù)的定義域,再求交集.【變式訓(xùn)練】1.已知函數(shù)SKIPIF1<0的定義域是SKIPIF1<0,則函數(shù)SKIPIF1<0的定義域?yàn)開_____.【答案】SKIPIF1<0【詳解】SKIPIF1<0的定義域是SKIPIF1<0,則SKIPIF1<0,即函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0.則函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0.故答案為:SKIPIF1<0.2.已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,則函數(shù)SKIPIF1<0的定義域?yàn)椋ǎ〢.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:B.3.已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,則函數(shù)SKIPIF1<0的定義域?yàn)椋ǎ〢.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D解:∵函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0∴SKIPIF1<0,SKIPIF1<0∴函數(shù)SKIPIF1<0中,SKIPIF1<0∴SKIPIF1<0所以函數(shù)SKIPIF1<0的定義域?yàn)閇SKIPIF1<0].故選:D考四:函數(shù)的解析式求法【典例例題】例1.(待定系數(shù)法)已知函數(shù)SKIPIF1<0是一次函數(shù),滿足SKIPIF1<0,則SKIPIF1<0的解析式可能為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】AD【詳解】設(shè)SKIPIF1<0,由題意可知SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0.故選:AD.例2.(換元法或配湊法(適用于了SKIPIF1<0型))已知SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】因SKIPIF1<0,則設(shè)SKIPIF1<0,有SKIPIF1<0,而SKIPIF1<0,則有SKIPIF1<0,于是得SKIPIF1<0,所以SKIPIF1<0,故選:C例3.已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】令SKIPIF1<0為SKIPIF1<0,則SKIPIF1<0,與SKIPIF1<0聯(lián)立可解得,SKIPIF1<0.故選:D.【方法技巧與總結(jié)】求函數(shù)解析式的常用方法如下:(1)當(dāng)已知函數(shù)的類型時(shí),可用待定系數(shù)法求解.(2)當(dāng)已知表達(dá)式為SKIPIF1<0時(shí),可考慮配湊法或換元法,若易將含SKIPIF1<0的式子配成SKIPIF1<0,用配湊法.若易換元后求出SKIPIF1<0,用換元法.(3)若求抽象函數(shù)的解析式,通常采用方程組法.(4)求分段函數(shù)的解析式時(shí),要注意符合變量的要求.(5)當(dāng)出現(xiàn)大基團(tuán)換元轉(zhuǎn)換繁瑣時(shí),可考慮配湊法求解.(6)若已知成對(duì)出現(xiàn)SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,SKIPIF1<0,類型的抽象函數(shù)表達(dá)式,則常用解方程組法構(gòu)造另一個(gè)方程,消元的方法求出SKIPIF1<0.【變式訓(xùn)練】1.設(shè)y=f(x)是一次函數(shù),若f(0)=1,且SKIPIF1<0成等比數(shù)列,則SKIPIF1<0等于(
)A.n(2n+3) B.n(n+4)C.2n(2n+3) D.2n(n+4)【答案】A【詳解】由已知,假設(shè)SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0.SKIPIF1<0成等比數(shù)列,且SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列,即SKIPIF1<0,SKIPIF1<0,從而解得SKIPIF1<0(舍去),SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.故選:A.2.已知函數(shù)SKIPIF1<0,則SKIPIF1<0的解析式為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故選:A.3.已知函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的解析式為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】函數(shù)SKIPIF1<0滿足SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0知SKIPIF1<0,故原函數(shù)可轉(zhuǎn)化為SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0的解析式為SKIPIF1<0.故選:A.考點(diǎn)五:分段函數(shù)【典例例題】例1.已知函數(shù)SKIPIF1<0若SKIPIF1<0,則m的值為(
)A.SKIPIF1<0 B.2 C.9 D.2或9【答案】C【詳解】∵函數(shù)SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0.故選:C.例2.(2022·廣東東莞·高三期末)(多選)已知函數(shù)SKIPIF1<0,則下列結(jié)論正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.關(guān)于SKIPIF1<0的方程SKIPIF1<0的所有根之和為SKIPIF1<0 D.關(guān)于SKIPIF1<0的方程SKIPIF1<0的所有根之積小于SKIPIF1<0【答案】.ACD【詳解】SKIPIF1<0,SKIPIF1<0,A正確;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,關(guān)于SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,
(SKIPIF1<0,SKIPIF1<0表示不超過SKIPIF1<0的整數(shù))所以B錯(cuò),SKIPIF1<0的根為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0的根為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0的根為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0所有根的和為:SKIPIF1<0,C正確;由SKIPIF1<0,累加可得SKIPIF1<0所以所有根之積小于SKIPIF1<0,D正確.故選:ACD.【方法技巧與總結(jié)】1.分段函數(shù)的求值問題,必須注意自變量的值位于哪一個(gè)區(qū)間,選定該區(qū)間對(duì)應(yīng)的解析式代入求值2.函數(shù)區(qū)間分類討論問題,則需注意在計(jì)算之后進(jìn)行檢驗(yàn)所求是否在相應(yīng)的分段區(qū)間內(nèi).【變式訓(xùn)練】1.已知SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(
)A.2 B.SKIPIF1<0 C.1 D.0【答案】B【詳解】∵SKIPIF1<0,SKIPIF1<0,∴必有SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),∴SKIPIF1<0.故選:B.2.己知函數(shù)SKIPIF1<0,則SKIPIF1<0(
)A.1 B.2 C.3 D.4【答案】B【詳解】由題意,得SKIPIF1<0,SKIPIF1<0.故選:B.3.設(shè)函數(shù)SKIPIF1<0,則SKIPIF1<0(
)A.2 B.6 C.8 D.10【答案】B【詳解】解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:B.4.已知函數(shù)SKIPIF1<0,則SKIPIF1<0___________;若SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0___________.【答案】
1
SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以當(dāng)SKIPIF1<0即SKIPIF1<0時(shí),SKIPIF1<0,不符合;當(dāng)SKIPIF1<0即SKIPIF1<0時(shí),SKIPIF1<0,符合;當(dāng)SKIPIF1<0即SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0無解,不符合.所以實(shí)數(shù)SKIPIF1<0SKIPIF1<0.故答案為:1;SKIPIF1<0【鞏固練習(xí)】一.單選題1.下列函數(shù)中,不滿足:SKIPIF1<0的是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】試題分析:A中SKIPIF1<0,B中SKIPIF1<0,C中SKIPIF1<0,D中SKIPIF1<02.若函數(shù)f(x)滿足f(1-lnx)=SKIPIF1<0,則f(2)=()A.SKIPIF1<0 B.eC.SKIPIF1<0 D.-1【答案】B【詳解】由1-lnx=2,得SKIPIF1<0,SKIPIF1<0,即f(2)=e.故選:B3.設(shè)全集SKIPIF1<0,集合SKIPIF1<0,則SKIPIF1<0(
)A.(1,2) B.(1,2]C.(2,+∞) D.[2,+∞)【答案】D【詳解】SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故選:D.4.已知函數(shù)SKIPIF1<0的定義域?yàn)?-2,0),則SKIPIF1<0的定義域?yàn)椋?/p>
)A.(-1,0) B.(-2,0) C.(0,1) D.SKIPIF1<0【答案】C【詳解】由題設(shè),若SKIPIF1<0,則SKIPIF1<0,∴對(duì)于SKIPIF1<0有SKIPIF1<0,故其定義域?yàn)镾KIPIF1<0.故選:C5.若函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0.從而SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值,且最小值為SKIPIF1<0.故選:D二、多選題6.(2022·全國·高三專題練習(xí))已知SKIPIF1<0滿足SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】AC【詳解】SKIPIF1<0,SKIPIF1<0化簡得SKIPIF1<0兩式相加得SKIPIF1<0,解得SKIPIF1<0故SKIPIF1<0,A正確,B錯(cuò)誤;又SKIPIF1<0,則SKIPIF1<0,C正確,D錯(cuò)誤;故選:AC7.下列四組函數(shù)中,f(x)與g(x)表示同一函數(shù)的是(
)A.f(x)=x+1,g(x)=SKIPIF1<0 B.f(x)=SKIPIF1<0·SKIPIF1<0,g(x)=SKIPIF1<0C.f(x)=(x-1)0,g(x)=1 D.f(x)=SKIPIF1<0,g(x)=SKIPIF1<0【答案】BD【詳解】對(duì)于A,SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0的定義域?yàn)镾KIPIF1<0,故不滿足;對(duì)于B,SKIPIF1<0、SKIPIF1<0的定義域都為SKIPIF1<0,且解析式可化為一樣,故表示的是同一函數(shù);對(duì)于C,SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0的定義域?yàn)镾KIPIF1<0,故不滿足;對(duì)于D,SKIPIF1<0、SKIPIF1<0的定義域都為SKIPIF1<0,且解析式可化為一樣,故表示的是同一函數(shù)故選:BD8.關(guān)于直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 用料小車課程設(shè)計(jì)總結(jié)
- 消防學(xué)工程課程設(shè)計(jì)
- 2024年項(xiàng)目合作與股權(quán)轉(zhuǎn)讓協(xié)議
- 2024年陜西省建筑安全員C證考試題庫
- 珠寶首飾設(shè)計(jì)與傳統(tǒng)手工藝結(jié)合考核試卷
- 石墨在磁共振成像(MRI)材料的應(yīng)用考核試卷
- 玻璃藝術(shù)壁畫考核試卷
- 燃料銷售點(diǎn)的服務(wù)流程再造考核試卷
- 教育培訓(xùn)行業(yè)的市場(chǎng)趨勢(shì)與資本運(yùn)作模式考核試卷
- 森林經(jīng)營與管護(hù)的人才評(píng)價(jià)與激勵(lì)考核試卷
- 《基因突變的機(jī)制》課件
- 天安門地區(qū)地下空間開發(fā)利用策略-洞察分析
- 湖北省黃石市大冶市2023-2024學(xué)年八年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(含答案)
- 村衛(wèi)生站衛(wèi)生信息管理制度模版(3篇)
- 《基層管理者職業(yè)素養(yǎng)與行為規(guī)范》考核試題及答案
- 2024-2025學(xué)年 語文二年級(jí)上冊(cè)統(tǒng)編版期末測(cè)試卷(含答案)
- 《爆破理論基礎(chǔ)》課件
- 中國成人失眠診斷與治療指南(2023版)解讀
- 小兒咳嗽推拿治療
- 產(chǎn)品質(zhì)量知識(shí)培訓(xùn)課件
- 乳腺旋切手術(shù)
評(píng)論
0/150
提交評(píng)論