版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湛江市重點(diǎn)名校2024屆中考數(shù)學(xué)押題試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.不等式組的解集是()A.﹣1≤x≤4 B.x<﹣1或x≥4 C.﹣1<x<4 D.﹣1<x≤42.如圖,在平行四邊形ABCD中,AC與BD相交于O,且AO=BD=4,AD=3,則△BOC的周長(zhǎng)為()A.9 B.10 C.12 D.143.如圖,在四邊形ABCD中,∠A+∠D=α,∠ABC的平分線與∠BCD的平分線交于點(diǎn)P,則∠P=()A.90°-α B.90°+α C. D.360°-α4.下列計(jì)算中,正確的是()A.a(chǎn)?3a=4a2 B.2a+3a=5a2C.(ab)3=a3b3 D.7a3÷14a2=2a5.有兩組數(shù)據(jù),A組數(shù)據(jù)為2、3、4、5、6;B組數(shù)據(jù)為1、7、3、0、9,這兩組數(shù)據(jù)的()A.中位數(shù)相等B.平均數(shù)不同C.A組數(shù)據(jù)方差更大D.B組數(shù)據(jù)方差更大6.對(duì)于函數(shù)y=,下列說(shuō)法正確的是()A.y是x的反比例函數(shù) B.它的圖象過(guò)原點(diǎn)C.它的圖象不經(jīng)過(guò)第三象限 D.y隨x的增大而減小7.如圖,在?ABCD中,∠DAB的平分線交CD于點(diǎn)E,交BC的延長(zhǎng)線于點(diǎn)G,∠ABC的平分線交CD于點(diǎn)F,交AD的延長(zhǎng)線于點(diǎn)H,AG與BH交于點(diǎn)O,連接BE,下列結(jié)論錯(cuò)誤的是()A.BO=OHB.DF=CEC.DH=CGD.AB=AE8.如果m的倒數(shù)是﹣1,那么m2018等于()A.1 B.﹣1 C.2018 D.﹣20189.某美術(shù)社團(tuán)為練習(xí)素描,他們第一次用120元買了若干本相同的畫冊(cè),第二次用240元在同一家商店買與上一次相同的畫冊(cè),這次商家每本優(yōu)惠4元,結(jié)果比上次多買了20本.求第一次買了多少本畫冊(cè)?設(shè)第一次買了x本畫冊(cè),列方程正確的是()A. B.C. D.10.如圖,在平面直角坐標(biāo)系xOy中,A(2,0),B(0,2),⊙C的圓心為點(diǎn)C(﹣1,0),半徑為1.若D是⊙C上的一個(gè)動(dòng)點(diǎn),線段DA與y軸交于E點(diǎn),則△ABE面積的最小值是()A.2B.83C.2+2二、填空題(共7小題,每小題3分,滿分21分)11.如圖,Rt△ABC中,∠ABC=90°,AB=BC,直線l1、l2、l1分別通過(guò)A、B、C三點(diǎn),且l1∥l2∥l1.若l1與l2的距離為5,l2與l1的距離為7,則Rt△ABC的面積為___________12.如圖,已知在Rt△ABC中,∠ACB=90°,AB=4,分別以AC,BC為直徑作半圓,面積分別記為S1,S2,則S1+S2等_________.13.某招聘考試分筆試和面試兩種,其中筆試按60%、面試按40%計(jì)算加權(quán)平均數(shù),作為總成績(jī).孔明筆試成績(jī)90分,面試成績(jī)85分,那么孔明的總成績(jī)是分.14.有一個(gè)計(jì)算程序,每次運(yùn)算都是把一個(gè)數(shù)先乘2,再除以它與1的和,多次重復(fù)進(jìn)行這種運(yùn)算的過(guò)程如下:則第n次的運(yùn)算結(jié)果是____________(用含字母x和n的代數(shù)式表示).15.如圖,P為正方形ABCD內(nèi)一點(diǎn),PA:PB:PC=1:2:3,則∠APB=_____________.16.如圖,已知的半徑為2,內(nèi)接于,,則__________.17.如圖,A、B是雙曲線y=上的兩點(diǎn),過(guò)A點(diǎn)作AC⊥x軸,交OB于D點(diǎn),垂足為C.若D為OB的中點(diǎn),△ADO的面積為3,則k的值為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖所示,內(nèi)接于圓O,于D;(1)如圖1,當(dāng)AB為直徑,求證:;(2)如圖2,當(dāng)AB為非直徑的弦,連接OB,則(1)的結(jié)論是否成立?若成立請(qǐng)證明,不成立說(shuō)明由;(3)如圖3,在(2)的條件下,作于E,交CD于點(diǎn)F,連接ED,且,若,,求CF的長(zhǎng)度.19.(5分)如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+2x+c與x軸交于A(﹣1,0)B(3,0)兩點(diǎn),與y軸交于點(diǎn)C.求拋物線y=ax2+2x+c的解析式:;點(diǎn)D為拋物線上對(duì)稱軸右側(cè)、x軸上方一點(diǎn),DE⊥x軸于點(diǎn)E,DF∥AC交拋物線對(duì)稱軸于點(diǎn)F,求DE+DF的最大值;①在拋物線上是否存在點(diǎn)P,使以點(diǎn)A,P,C為頂點(diǎn),AC為直角邊的三角形是直角三角形?若存在,請(qǐng)求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;②點(diǎn)Q在拋物線對(duì)稱軸上,其縱坐標(biāo)為t,請(qǐng)直接寫出△ACQ為銳角三角形時(shí)t的取值范圍.20.(8分)已知△ABC內(nèi)接于⊙O,AD平分∠BAC.(1)如圖1,求證:;(2)如圖2,當(dāng)BC為直徑時(shí),作BE⊥AD于點(diǎn)E,CF⊥AD于點(diǎn)F,求證:DE=AF;(3)如圖3,在(2)的條件下,延長(zhǎng)BE交⊙O于點(diǎn)G,連接OE,若EF=2EG,AC=2,求OE的長(zhǎng).21.(10分)如圖,在△ABC中,已知AB=AC,AB的垂直平分線交AB于點(diǎn)N,交AC于點(diǎn)M,連接MB.若∠ABC=70°,則∠NMA的度數(shù)是度.若AB=8cm,△MBC的周長(zhǎng)是14cm.①求BC的長(zhǎng)度;②若點(diǎn)P為直線MN上一點(diǎn),請(qǐng)你直接寫出△PBC周長(zhǎng)的最小值.22.(10分)如圖,大樓AB的高為16m,遠(yuǎn)處有一塔CD,小李在樓底A處測(cè)得塔頂D處的仰角為60°,在樓頂B處測(cè)得塔頂D處的仰角為45°,其中A、C兩點(diǎn)分別位于B、D兩點(diǎn)正下方,且A、C兩點(diǎn)在同一水平線上,求塔CD的高.(=1.73,結(jié)果保留一位小數(shù).)23.(12分)如圖,在直角三角形ABC中,(1)過(guò)點(diǎn)A作AB的垂線與∠B的平分線相交于點(diǎn)D(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);(2)若∠A=30°,AB=2,則△ABD的面積為.24.(14分)下表中給出了變量x,與y=ax2,y=ax2+bx+c之間的部分對(duì)應(yīng)值,(表格中的符號(hào)“…”表示該項(xiàng)數(shù)據(jù)已丟失)x﹣101ax2……1ax2+bx+c72…(1)求拋物線y=ax2+bx+c的表達(dá)式(2)拋物線y=ax2+bx+c的頂點(diǎn)為D,與y軸的交點(diǎn)為A,點(diǎn)M是拋物線對(duì)稱軸上一點(diǎn),直線AM交對(duì)稱軸右側(cè)的拋物線于點(diǎn)B,當(dāng)△ADM與△BDM的面積比為2:3時(shí),求B點(diǎn)坐標(biāo);(3)在(2)的條件下,設(shè)線段BD與x軸交于點(diǎn)C,試寫出∠BAD和∠DCO的數(shù)量關(guān)系,并說(shuō)明理由.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解題分析】試題分析:解不等式①可得:x>-1,解不等式②可得:x≤4,則不等式組的解為-1<x≤4,故選D.2、A【解題分析】
利用平行四邊形的性質(zhì)即可解決問(wèn)題.【題目詳解】∵四邊形ABCD是平行四邊形,∴AD=BC=3,OD=OB==2,OA=OC=4,∴△OBC的周長(zhǎng)=3+2+4=9,故選:A.【題目點(diǎn)撥】題考查了平行四邊形的性質(zhì)和三角形周長(zhǎng)的計(jì)算,平行四邊形的性質(zhì)有:平行四邊形對(duì)邊平行且相等;平行四邊形對(duì)角相等,鄰角互補(bǔ);平行四邊形對(duì)角線互相平分.3、C【解題分析】試題分析:∵四邊形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分別為∠ABC、∠BCD的平分線,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,則∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故選C.考點(diǎn):1.多邊形內(nèi)角與外角2.三角形內(nèi)角和定理.4、C【解題分析】
根據(jù)同底數(shù)冪的運(yùn)算法則進(jìn)行判斷即可.【題目詳解】解:A、a?3a=3a2,故原選項(xiàng)計(jì)算錯(cuò)誤;B、2a+3a=5a,故原選項(xiàng)計(jì)算錯(cuò)誤;C、(ab)3=a3b3,故原選項(xiàng)計(jì)算正確;D、7a3÷14a2=a,故原選項(xiàng)計(jì)算錯(cuò)誤;故選C.【題目點(diǎn)撥】本題考點(diǎn):同底數(shù)冪的混合運(yùn)算.5、D【解題分析】
分別求出兩組數(shù)據(jù)的中位數(shù)、平均數(shù)、方差,比較即可得出答案.【題目詳解】A組數(shù)據(jù)的中位數(shù)是:4,平均數(shù)是:(2+3+4+5+6)÷5=4,方差是:[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2]÷5=2;B組數(shù)據(jù)的中位數(shù)是:3,平均數(shù)是:(1+7+3+0+9)÷5=4,方差是:[(1-4)2+(7-4)2+(3-4)2+(0-4)2+(9-4)2]÷5=12;∴兩組數(shù)據(jù)的中位數(shù)不相等,平均數(shù)相等,B組方差更大.故選D.【題目點(diǎn)撥】本題考查了中位數(shù)、平均數(shù)、方差的計(jì)算,熟練掌握中位數(shù)、平均數(shù)、方差的計(jì)算方法是解答本題的關(guān)鍵.6、C【解題分析】
直接利用反比例函數(shù)的性質(zhì)結(jié)合圖象分布得出答案.【題目詳解】對(duì)于函數(shù)y=,y是x2的反比例函數(shù),故選項(xiàng)A錯(cuò)誤;它的圖象不經(jīng)過(guò)原點(diǎn),故選項(xiàng)B錯(cuò)誤;它的圖象分布在第一、二象限,不經(jīng)過(guò)第三象限,故選項(xiàng)C正確;第一象限,y隨x的增大而減小,第二象限,y隨x的增大而增大,故選C.【題目點(diǎn)撥】此題主要考查了反比例函數(shù)的性質(zhì),正確得出函數(shù)圖象分布是解題關(guān)鍵.7、D【解題分析】解:∵四邊形ABCD是平行四邊形,∴AH∥BG,AD=BC,∴∠H=∠HBG.∵∠HBG=∠HBA,∴∠H=∠HBA,∴AH=AB.同理可證BG=AB,∴AH=BG.∵AD=BC,∴DH=CG,故C正確.∵AH=AB,∠OAH=∠OAB,∴OH=OB,故A正確.∵DF∥AB,∴∠DFH=∠ABH.∵∠H=∠ABH,∴∠H=∠DFH,∴DF=DH.同理可證EC=CG.∵DH=CG,∴DF=CE,故B正確.無(wú)法證明AE=AB,故選D.8、A【解題分析】
因?yàn)閮蓚€(gè)數(shù)相乘之積為1,則這兩個(gè)數(shù)互為倒數(shù),如果m的倒數(shù)是﹣1,則m=-1,然后再代入m2018計(jì)算即可.【題目詳解】因?yàn)閙的倒數(shù)是﹣1,所以m=-1,所以m2018=(-1)2018=1,故選A.【題目點(diǎn)撥】本題主要考查倒數(shù)的概念和乘方運(yùn)算,解決本題的關(guān)鍵是要熟練掌握倒數(shù)的概念和乘方運(yùn)算法則.9、A【解題分析】分析:由設(shè)第一次買了x本資料,則設(shè)第二次買了(x+20)本資料,由等量關(guān)系:第二次比第一次每本優(yōu)惠4元,即可得到方程.詳解:設(shè)他上月買了x本筆記本,則這次買了(x+20)本,根據(jù)題意得:.故選A.點(diǎn)睛:本題考查了分式方程的應(yīng)用,解答本題的關(guān)鍵是讀懂題意,設(shè)出未知數(shù),找出合適的等量關(guān)系,列方程解答即可.10、C【解題分析】當(dāng)⊙C與AD相切時(shí),△ABE面積最大,連接CD,則∠CDA=90°,∵A(2,0),B(0,2),⊙C的圓心為點(diǎn)C(-1,0),半徑為1,∴CD=1,AC=2+1=3,∴AD=AC2-CD∵∠AOE=∠ADC=90°,∠EAO=∠CAD,∴△AOE∽△ADC,∴OA即222=∴BE=OB+OE=2+2∴S△ABE=1BE?OA=12×(2+22故答案為C.二、填空題(共7小題,每小題3分,滿分21分)11、17【解題分析】過(guò)點(diǎn)B作EF⊥l2,交l1于E,交l1于F,如圖,∵EF⊥l2,l1∥l2∥l1,∴EF⊥l1⊥l1,∴∠ABE+∠EAB=90°,∠AEB=∠BFC=90°,又∵∠ABC=90°,∴∠ABE+∠FBC=90°,∴∠EAB=∠FBC,在△ABE和△BCF中,,∴△ABE≌△BCF,∴BE=CF=5,AE=BF=7,在Rt△ABE中,AB2=BE2+AE2,∴AB2=74,∴S△ABC=AB?BC=AB2=17.故答案是17.點(diǎn)睛:本題考查了全等三角形的判定和性質(zhì)、勾股定理、平行線間的距離,三角形的面積公式,解題的關(guān)鍵是做輔助線,構(gòu)造全等三角形,通過(guò)證明三角形全等對(duì)應(yīng)邊相等,再利用三角形的面積公式即可得解.12、【解題分析】試題解析:所以故答案為13、88【解題分析】試題分析:根據(jù)筆試和面試所占的百分比以及筆試成績(jī)和面試成績(jī),列出算式,進(jìn)行計(jì)算即可:∵筆試按60%、面試按40%計(jì)算,∴總成績(jī)是:90×60%+85×40%=88(分).14、【解題分析】試題分析:根據(jù)題意得;;;根據(jù)以上規(guī)律可得:=.考點(diǎn):規(guī)律題.15、°【解題分析】
通過(guò)旋轉(zhuǎn),把PA、PB、PC或關(guān)聯(lián)的線段集中到同一個(gè)三角形,再根據(jù)兩邊的平方和等于第三邊求證直角三角形,可以求解∠APB.【題目詳解】把△PAB繞B點(diǎn)順時(shí)針旋轉(zhuǎn)90°,得△P′BC,則△PAB≌△P′BC,設(shè)PA=x,PB=2x,PC=3x,連PP′,得等腰直角△PBP′,PP′2=(2x)2+(2x)2=8x2,∠PP′B=45°.又PC2=PP′2+P′C2,得∠PP′C=90°.故∠APB=∠CP′B=45°+90°=135°.故答案為135°.【題目點(diǎn)撥】本題考查的是正方形四邊相等的性質(zhì),考查直角三角形中勾股定理的運(yùn)用,把△PAB順時(shí)針旋轉(zhuǎn)90°使得A′與C點(diǎn)重合是解題的關(guān)鍵.16、【解題分析】分析:根據(jù)圓內(nèi)接四邊形對(duì)邊互補(bǔ)和同弧所對(duì)的圓心角是圓周角的二倍,可以求得∠AOB的度數(shù),然后根據(jù)勾股定理即可求得AB的長(zhǎng).詳解:連接AD、AE、OA、OB,∵⊙O的半徑為2,△ABC內(nèi)接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2,故答案為:2.點(diǎn)睛:本題考查三角形的外接圓和外心,解答本題的關(guān)鍵是明確題意,找出所求問(wèn)題需要的條件,利用數(shù)形結(jié)合的思想解答.17、1.【解題分析】過(guò)點(diǎn)B作BE⊥x軸于點(diǎn)E,根據(jù)D為OB的中點(diǎn)可知CD是△OBE的中位線,即CD=BE,設(shè)A(x,),則B(2x,),故CD=,AD=﹣,再由△ADO的面積為1求出k的值即可得出結(jié)論.解:如圖所示,過(guò)點(diǎn)B作BE⊥x軸于點(diǎn)E,∵D為OB的中點(diǎn),∴CD是△OBE的中位線,即CD=BE.設(shè)A(x,),則B(2x,),CD=,AD=﹣,∵△ADO的面積為1,∴AD?OC=3,(﹣)?x=3,解得k=1,故答案為1.三、解答題(共7小題,滿分69分)18、(1)見(jiàn)解析;(2)成立;(3)【解題分析】
(1)根據(jù)圓周角定理求出∠ACB=90°,求出∠ADC=90°,再根據(jù)三角形內(nèi)角和定理求出即可;(2)根據(jù)圓周角定理求出∠BOC=2∠A,求出∠OBC=90°-∠A和∠ACD=90°-∠A即可;(3)分別延長(zhǎng)AE、CD交⊙O于H、K,連接HK、CH、AK,在AD上取DG=BD,延長(zhǎng)CG交AK于M,延長(zhǎng)KO交⊙O于N,連接CN、AN,求出關(guān)于a的方程,再求出a即可.【題目詳解】(1)證明:∵AB為直徑,∴,∵于D,∴,∴,,∴;(2)成立,證明:連接OC,由圓周角定理得:,∵,∴,∵,∴,∴;(3)分別延長(zhǎng)AE、CD交⊙O于H、K,連接HK、CH、AK,∵,,∴,∴,,∵,∴,∵根據(jù)圓周角定理得:,∴,∴由三角形內(nèi)角和定理得:,∴,∴,同理,∵,∴,在AD上取,延長(zhǎng)CG交AK于M,則,,∴,∴,延長(zhǎng)KO交⊙O于N,連接CN、AN,則,∴,∵,∴,∴四邊形CGAN是平行四邊形,∴,作于T,則T為CK的中點(diǎn),∵O為KN的中點(diǎn),∴,∵,,∴由勾股定理得:,∴,作直徑HS,連接KS,∵,,∴由勾股定理得:,∴,∴,設(shè),,∴,,∵,∴,解得:,∴,∴.【題目點(diǎn)撥】本題考查了垂徑定理、解直角三角形、等腰三角形的性質(zhì)、圓周角定理、勾股定理等知識(shí)點(diǎn),能綜合運(yùn)用知識(shí)點(diǎn)進(jìn)行推理是解此題的關(guān)鍵,綜合性比較強(qiáng),難度偏大.19、(1)y=﹣x2+2x+3;(2)DE+DF有最大值為;(3)①存在,P的坐標(biāo)為(,)或(,);②<t<.【解題分析】
(1)設(shè)拋物線解析式為y=a(x+1)(x﹣3),根據(jù)系數(shù)的關(guān)系,即可解答(2)先求出當(dāng)x=0時(shí),C的坐標(biāo),設(shè)直線AC的解析式為y=px+q,把A,C的坐標(biāo)代入即可求出AC的解析式,過(guò)D作DG垂直拋物線對(duì)稱軸于點(diǎn)G,設(shè)D(x,﹣x2+2x+3),得出DE+DF=﹣x2+2x+3+(x-1)=﹣x2+(2+)x+3-,即可解答(3)①過(guò)點(diǎn)C作AC的垂線交拋物線于另一點(diǎn)P1,求出直線PC的解析式,再結(jié)合拋物線的解析式可求出P1,過(guò)點(diǎn)A作AC的垂線交拋物線于另一點(diǎn)P2,再利用A的坐標(biāo)求出P2,即可解答②觀察函數(shù)圖象與△ACQ為銳角三角形時(shí)的情況,即可解答【題目詳解】解:(1)設(shè)拋物線解析式為y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴拋物線解析式為y=﹣x2+2x+3;(2)當(dāng)x=0時(shí),y=﹣x2+2x+3=3,則C(0,3),設(shè)直線AC的解析式為y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直線AC的解析式為y=3x+3,如答圖1,過(guò)D作DG垂直拋物線對(duì)稱軸于點(diǎn)G,設(shè)D(x,﹣x2+2x+3),∵DF∥AC,∴∠DFG=∠ACO,易知拋物線對(duì)稱軸為x=1,∴DG=x-1,DF=(x-1),∴DE+DF=﹣x2+2x+3+(x-1)=﹣x2+(2+)x+3-,∴當(dāng)x=,DE+DF有最大值為;答圖1答圖2(3)①存在;如答圖2,過(guò)點(diǎn)C作AC的垂線交拋物線于另一點(diǎn)P1,∵直線AC的解析式為y=3x+3,∴直線PC的解析式可設(shè)為y=x+m,把C(0,3)代入得m=3,∴直線P1C的解析式為y=x+3,解方程組,解得或,則此時(shí)P1點(diǎn)坐標(biāo)為(,);過(guò)點(diǎn)A作AC的垂線交拋物線于另一點(diǎn)P2,直線AP2的解析式可設(shè)為y=x+n,把A(﹣1,0)代入得n=,∴直線PC的解析式為y=,解方程組,解得或,則此時(shí)P2點(diǎn)坐標(biāo)為(,),綜上所述,符合條件的點(diǎn)P的坐標(biāo)為(,)或(,);②<t<.【題目點(diǎn)撥】此題考查二次函數(shù)綜合題,解題關(guān)鍵在于把已知點(diǎn)代入解析式求值和作輔助線.20、(1)證明見(jiàn)解析;(1)證明見(jiàn)解析;(3)1.【解題分析】
(1)連接OB、OC、OD,根據(jù)圓心角與圓周角的性質(zhì)得∠BOD=1∠BAD,∠COD=1∠CAD,又AD平分∠BAC,得∠BOD=∠COD,再根據(jù)圓周角相等所對(duì)的弧相等得出結(jié)論.(1)過(guò)點(diǎn)O作OM⊥AD于點(diǎn)M,又一組角相等,再根據(jù)平行線的性質(zhì)得出對(duì)應(yīng)邊成比例,進(jìn)而得出結(jié)論;(3)延長(zhǎng)EO交AB于點(diǎn)H,連接CG,連接OA,BC為⊙O直徑,則∠G=∠CFE=∠FEG=90°,四邊形CFEG是矩形,得EG=CF,又AD平分∠BAC,再根據(jù)鄰補(bǔ)角與余角的性質(zhì)可得∠BAF=∠ABE,∠ACF=∠CAF,AE=BE,AF=CF,再根據(jù)直角三角形的三角函數(shù)計(jì)算出邊的長(zhǎng),根據(jù)“角角邊”證明出△HBO∽△ABC,根據(jù)相似三角形的性質(zhì)得出對(duì)應(yīng)邊成比例,進(jìn)而得出結(jié)論.【題目詳解】(1)如圖1,連接OB、OC、OD,∵∠BAD和∠BOD是所對(duì)的圓周角和圓心角,∠CAD和∠COD是所對(duì)的圓周角和圓心角,∴∠BOD=1∠BAD,∠COD=1∠CAD,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴=;(1)如圖1,過(guò)點(diǎn)O作OM⊥AD于點(diǎn)M,∴∠OMA=90°,AM=DM,∵BE⊥AD于點(diǎn)E,CF⊥AD于點(diǎn)F,∴∠CFM=90°,∠MEB=90°,∴∠OMA=∠MEB,∠CFM=∠OMA,∴OM∥BE,OM∥CF,∴BE∥OM∥CF,∴,∵OB=OC,∴=1,∴FM=EM,∴AM﹣FM=DM﹣EM,∴DE=AF;(3)延長(zhǎng)EO交AB于點(diǎn)H,連接CG,連接OA.∵BC為⊙O直徑,∴∠BAC=90°,∠G=90°,∴∠G=∠CFE=∠FEG=90°,∴四邊形CFEG是矩形,∴EG=CF,∵AD平分∠BAC,∴∠BAF=∠CAF=×90°=45°,∴∠ABE=180°﹣∠BAF﹣∠AEB=45°,∠ACF=180°﹣∠CAF﹣∠AFC=45°,∴∠BAF=∠ABE,∠ACF=∠CAF,∴AE=BE,AF=CF,在Rt△ACF中,∠AFC=90°,∴sin∠CAF=,即sin45°=,∴CF=1×=,∴EG=,∴EF=1EG=1,∴AE=3,在Rt△AEB中,∠AEB=90°,∴AB==6,∵AE=BE,OA=OB,∴EH垂直平分AB,∴BH=EH=3,∵∠OHB=∠BAC,∠ABC=∠ABC∴△HBO∽△ABC,∴,∴OH=1,∴OE=EH﹣OH=3﹣1=1.【題目點(diǎn)撥】本題考查了相似三角形的判定與性質(zhì)和圓的相關(guān)知識(shí)點(diǎn),解題的關(guān)鍵是熟練的掌握相似三角形的判定與性質(zhì)和圓的相關(guān)知識(shí)點(diǎn).21、(1)50;(2)①6;②1【解題分析】試題分析:(1)根據(jù)等腰三角形的性質(zhì)和線段垂直平分線的性質(zhì)即可得到結(jié)論;(2)①根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等的性質(zhì)可得AM=BM,然后求出△MBC的周長(zhǎng)=AC+BC,再代入數(shù)據(jù)進(jìn)行計(jì)算即可得解;②當(dāng)點(diǎn)P與M重合時(shí),△PBC周長(zhǎng)的值最小,于是得到結(jié)論.試題解析:解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°.∵AB的垂直平分線交AB于點(diǎn)N,∴∠ANM=90°,∴∠NMA=50°.故答案為50;(2)①∵M(jìn)N是AB的垂直平分線,∴AM=BM,∴△MBC的周長(zhǎng)=BM+CM+BC=AM+CM+BC=AC+BC.∵AB=8,△MBC的周長(zhǎng)是1,∴BC=1﹣8=6;②當(dāng)點(diǎn)P與M重合時(shí),△PBC周長(zhǎng)的值最小,理由:∵PB+PC=PA+PC,PA+PC≥AC,∴P與M重合時(shí),PA+PC=AC,此時(shí)PB+PC最小,∴△PBC周長(zhǎng)的最小值=AC+BC=8+6=1.22、塔CD的高度為37.9米【解題分析】試題分析:首先分析圖形,根據(jù)題意構(gòu)造直角三角形.本題涉及兩個(gè)直角三角形,即Rt△BED和Rt△DAC,利用已知角的正切分別計(jì)算,可得到一個(gè)關(guān)于AC的方程,從而求出DC.試題解析:作BE⊥CD于E.可得Rt△BED和矩形ACEB.則有CE=AB=16,AC=BE.在Rt△BED中,∠DBE=45°,DE=BE=AC.在Rt△DAC中,∠DAC=60°,DC=ACtan60°=AC.∵16+DE=DC,∴16+AC=AC,解得:AC=8+8=DE.所以塔CD的高度為(8+24)米≈37.9米,答:塔CD的高度為37.9米.23、(1)見(jiàn)解析(2)【解題分析】
(1)分別作∠ABC的平分線和過(guò)點(diǎn)A作AB的垂線,它們的交點(diǎn)為D點(diǎn);(2)利用角平分線定義得到∠ABD=30°,利用含30度的直角三角形三邊的關(guān)系得到AD=AB=,然后利用三角形面積公式求解.【題目詳解】解:(1)如圖,點(diǎn)D為所作;(2)∵∠CAB=30°,∴∠ABC=60°.∵BD為角平分線,∴∠ABD=30°.∵DA⊥AB,∴∠DAB=90°.在Rt△ABD中,AD=AB=,∴△ABD的面積=×2×=.故答案為.【題目點(diǎn)撥】本題考查了作圖﹣復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進(jìn)行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.也考查了三角形面積公式.24、(1)y=x2﹣4x+2;(2)點(diǎn)B的坐標(biāo)為(5,7);(1)∠BAD和∠DCO互補(bǔ),理由詳見(jiàn)解析.【解題分析】
(1)由(1,1)在拋物
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 數(shù)學(xué)四年級(jí)上冊(cè)口算題200道
- 小學(xué)六年級(jí)期中考試復(fù)習(xí)要點(diǎn)計(jì)劃月歷表(29篇)
- 2024年秋四年級(jí)語(yǔ)文上冊(cè)第二單元6蝙蝠和雷達(dá)課堂實(shí)錄新人教版
- 2024-2025學(xué)年五年級(jí)語(yǔ)文上冊(cè)第一單元3“沒(méi)頭腦”和“不高興”課文原文素材語(yǔ)文S版
- 黔南民族醫(yī)學(xué)高等??茖W(xué)?!杜R床微生物學(xué)檢驗(yàn)(二)》2023-2024學(xué)年第二學(xué)期期末試卷
- 廣州科技貿(mào)易職業(yè)學(xué)院《新媒體短音視頻創(chuàng)意制作》2023-2024學(xué)年第二學(xué)期期末試卷
- 廣西安全工程職業(yè)技術(shù)學(xué)院《分析化學(xué)二》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025至2030年中國(guó)玫瑰香塊數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年中國(guó)汽車門鎖塑件數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025年中國(guó)線性數(shù)據(jù)輸出磁場(chǎng)傳感器市場(chǎng)調(diào)查研究報(bào)告
- 2025年個(gè)人學(xué)習(xí)領(lǐng)導(dǎo)講話心得體會(huì)和工作措施例文(6篇)
- 2025大連機(jī)場(chǎng)招聘109人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2020-2025年中國(guó)中小企業(yè)行業(yè)市場(chǎng)調(diào)研分析及投資戰(zhàn)略咨詢報(bào)告
- 2025-2030年中國(guó)電動(dòng)高爾夫球車市場(chǎng)運(yùn)行狀況及未來(lái)發(fā)展趨勢(shì)分析報(bào)告
- 物流中心原材料入庫(kù)流程
- 河南省濮陽(yáng)市2024-2025學(xué)年高一上學(xué)期1月期末考試語(yǔ)文試題(含答案)
- 長(zhǎng)沙市2025屆中考生物押題試卷含解析
- 2024年08月北京中信銀行北京分行社會(huì)招考(826)筆試歷年參考題庫(kù)附帶答案詳解
- 2024年芽苗菜市場(chǎng)調(diào)查報(bào)告
- 蘇教版二年級(jí)數(shù)學(xué)下冊(cè)全冊(cè)教學(xué)設(shè)計(jì)
- 職業(yè)技術(shù)學(xué)院教學(xué)質(zhì)量監(jiān)控與評(píng)估處2025年教學(xué)質(zhì)量監(jiān)控督導(dǎo)工作計(jì)劃
評(píng)論
0/150
提交評(píng)論