




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
貴州省畢節(jié)市黔西縣重點達標名校2024屆中考一模數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.某校九年級一班全體學(xué)生2017年中招理化生實驗操作考試的成績統(tǒng)計如下表,根據(jù)表中的信息判斷,下列結(jié)論中錯誤的是()成績(分)3029282618人數(shù)(人)324211A.該班共有40名學(xué)生B.該班學(xué)生這次考試成績的平均數(shù)為29.4分C.該班學(xué)生這次考試成績的眾數(shù)為30分D.該班學(xué)生這次考試成績的中位數(shù)為28分2.一個容量為50的樣本,在整理頻率分布時,將所有頻率相加,其和是()A.50B.0.02C.0.1D.13.的負倒數(shù)是()A. B.- C.3 D.﹣34.一元二次方程3x2-6x+4=0根的情況是A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根 C.有兩個實數(shù)根 D.沒有實數(shù)根5.實數(shù)的相反數(shù)是()A.- B. C. D.6.已知A(,),B(2,)兩點在雙曲線上,且,則m的取值范圍是()A. B. C. D.7.一球鞋廠,現(xiàn)打折促銷賣出330雙球鞋,比上個月多賣10%,設(shè)上個月賣出x雙,列出方程()A.10%x=330 B.(1﹣10%)x=330C.(1﹣10%)2x=330 D.(1+10%)x=3308.中國古代人民很早就在生產(chǎn)生活中發(fā)現(xiàn)了許多有趣的數(shù)學(xué)問題,其中《孫子算經(jīng)》中有個問題:今有三人共車,二車空;二人共車,九人步,問人與車各幾何?這道題的意思是:今有若干人乘車,每三人乘一車,最終剩余2輛車,若每2人共乘一車,最終剩余9個人無車可乘,問有多少人,多少輛車?如果我們設(shè)有輛車,則可列方程()A. B.C. D.9.如圖是一個由5個相同的正方體組成的立體圖形,它的三視圖是()A. B.C. D.10.如圖,以AD為直徑的半圓O經(jīng)過Rt△ABC斜邊AB的兩個端點,交直角邊AC于點E;B、E是半圓弧的三等分點,的長為,則圖中陰影部分的面積為()A. B. C. D.11.計算的結(jié)果是()A.a(chǎn)2 B.-a2 C.a(chǎn)4 D.-a412.如圖,四邊形ABCE內(nèi)接于⊙O,∠DCE=50°,則∠BOE=()A.100° B.50° C.70° D.130°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,已知圓柱底面周長為6cm,圓柱高為2cm,在圓柱的側(cè)面上,過點A和點C嵌有一圈金屬絲,則這圈金屬絲的周長最小為_____cm.14.如圖,在矩形ABCD中,對角線AC與BD相交于點O,過點A作AE⊥BD,垂足為點E,若∠EAC=2∠CAD,則∠BAE=__________度.15.﹣|﹣1|=______.16.如圖,a∥b,∠1=110°,∠3=40°,則∠2=_____°.17.廢舊電池對環(huán)境的危害十分巨大,一粒紐扣電池能污染600立方米的水(相當于一個人一生的飲水量).某班有50名學(xué)生,如果每名學(xué)生一年丟棄一粒紐扣電池,且都沒有被回收,那么被該班學(xué)生一年丟棄的紐扣電池能污染的水用科學(xué)記數(shù)法表示為_____立方米.18.拋物線y=(x﹣3)2+1的頂點坐標是____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知:AD和BC相交于點O,∠A=∠C,AO=2,BO=4,OC=3,求OD的長.20.(6分)已知:如圖,在平行四邊形中,的平分線交于點,過點作的垂線交于點,交延長線于點,連接,.求證:;若,,,求的長.21.(6分)實踐體驗:(1)如圖1:四邊形ABCD是矩形,試在AD邊上找一點P,使△BCP為等腰三角形;(2)如圖2:矩形ABCD中,AB=13,AD=12,點E在AB邊上,BE=3,點P是矩形ABCD內(nèi)或邊上一點,且PE=5,點Q是CD邊上一點,求PQ得最值;問題解決:(3)如圖3,四邊形ABCD中,AD∥BC,∠C=90°,AD=3,BC=6,DC=4,點E在AB邊上,BE=2,點P是四邊形ABCD內(nèi)或邊上一點,且PE=2,求四邊形PADC面積的最值.22.(8分)計算:27﹣(﹣2)0+|1﹣3|+2cos30°.23.(8分)在△ABC中,已知AB=AC,∠BAC=90°,E為邊AC上一點,連接BE.(1)如圖1,若∠ABE=15°,O為BE中點,連接AO,且AO=1,求BC的長;(2)如圖2,D為AB上一點,且滿足AE=AD,過點A作AF⊥BE交BC于點F,過點F作FG⊥CD交BE的延長線于點G,交AC于點M,求證:BG=AF+FG.24.(10分)如圖所示,點C為線段OB的中點,D為線段OA上一點.連結(jié)AC、BD交于點P.(問題引入)(1)如圖1,若點P為AC的中點,求的值.溫馨提示:過點C作CE∥AO交BD于點E.(探索研究)(2)如圖2,點D為OA上的任意一點(不與點A、O重合),求證:.(問題解決)(3)如圖2,若AO=BO,AO⊥BO,,求tan∠BPC的值.25.(10分)如圖,AB是半圓O的直徑,D為弦BC的中點,延長OD交弧BC于點E,點F為OD的延長線上一點且滿足∠OBC=∠OFC,求證:CF為⊙O的切線;若四邊形ACFD是平行四邊形,求sin∠BAD的值.26.(12分)平面直角坐標系xOy中(如圖),已知拋物線y=ax2+bx+3與y軸相交于點C,與x軸正半軸相交于點A,OA=OC,與x軸的另一個交點為B,對稱軸是直線x=1,頂點為P.(1)求這條拋物線的表達式和頂點P的坐標;(2)拋物線的對稱軸與x軸相交于點M,求∠PMC的正切值;(3)點Q在y軸上,且△BCQ與△CMP相似,求點Q的坐標.27.(12分)有一個n位自然數(shù)能被x0整除,依次輪換個位數(shù)字得到的新數(shù)能被x0+1整除,再依次輪換個位數(shù)字得到的新數(shù)能被x0+2整除,按此規(guī)律輪換后,能被x0+3整除,…,能被x0+n﹣1整除,則稱這個n位數(shù)是x0的一個“輪換數(shù)”.例如:60能被5整除,06能被6整除,則稱兩位數(shù)60是5的一個“輪換數(shù)”;再如:324能被2整除,243能被3整除,432能被4整除,則稱三位數(shù)324是2個一個“輪換數(shù)”.(1)若一個兩位自然數(shù)的個位數(shù)字是十位數(shù)字的2倍,求證這個兩位自然數(shù)一定是“輪換數(shù)”.(2)若三位自然數(shù)是3的一個“輪換數(shù)”,其中a=2,求這個三位自然數(shù).
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解題分析】A.∵32+4+2+1+1=40(人),故A正確;B.∵(30×32+29×4+28×2+26+18)÷40=29.4(分),故B正確;C.∵成績是30分的人有32人,最多,故C正確;D.該班學(xué)生這次考試成績的中位數(shù)為30分,故D錯誤;2、D【解題分析】所有小組頻數(shù)之和等于數(shù)據(jù)總數(shù),所有頻率相加等于1.3、D【解題分析】
根據(jù)倒數(shù)的定義,互為倒數(shù)的兩數(shù)乘積為1,2×=1.再求出2的相反數(shù)即可解答.【題目詳解】根據(jù)倒數(shù)的定義得:2×=1.
因此的負倒數(shù)是-2.
故選D.【題目點撥】本題考查了倒數(shù),解題的關(guān)鍵是掌握倒數(shù)的概念.4、D【解題分析】
根據(jù)?=b2-4ac,求出?的值,然后根據(jù)?的值與一元二次方程根的關(guān)系判斷即可.【題目詳解】∵a=3,b=-6,c=4,∴?=b2-4ac=(-6)2-4×3×4=-12<0,∴方程3x2-6x+4=0沒有實數(shù)根.故選D.【題目點撥】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac:當?>0時,一元二次方程有兩個不相等的實數(shù)根;當?=0時,一元二次方程有兩個相等的實數(shù)根;當?<0時,一元二次方程沒有實數(shù)根.5、A【解題分析】
根據(jù)相反數(shù)的定義即可判斷.【題目詳解】實數(shù)的相反數(shù)是-故選A.【題目點撥】此題主要考查相反數(shù)的定義,解題的關(guān)鍵是熟知相反數(shù)的定義即可求解.6、D【解題分析】
∵A(,),B(2,)兩點在雙曲線上,∴根據(jù)點在曲線上,點的坐標滿足方程的關(guān)系,得.∵,∴,解得.故選D.【題目詳解】請在此輸入詳解!7、D【解題分析】解:設(shè)上個月賣出x雙,根據(jù)題意得:(1+10%)x=1.故選D.8、A【解題分析】
根據(jù)每三人乘一車,最終剩余2輛車,每2人共乘一車,最終剩余1個人無車可乘,進而表示出總?cè)藬?shù)得出等式即可.【題目詳解】設(shè)有x輛車,則可列方程:
3(x-2)=2x+1.
故選:A.【題目點撥】此題主要考查了由實際問題抽象出一元一次方程,正確表示總?cè)藬?shù)是解題關(guān)鍵.9、D【解題分析】
找到從正面、左面、上看所得到的圖形即可,注意所有的看到的棱都應(yīng)表現(xiàn)在視圖中.【題目詳解】解:此幾何體的主視圖有兩排,從上往下分別有1,3個正方形;
左視圖有二列,從左往右分別有2,1個正方形;
俯視圖有三列,從上往下分別有3,1個正方形,
故選A.【題目點撥】本題考查了三視圖的知識,關(guān)鍵是掌握三視圖所看的位置.掌握定義是關(guān)鍵.此題主要考查了簡單組合體的三視圖,準確把握觀察角度是解題關(guān)鍵.10、D【解題分析】
連接BD,BE,BO,EO,先根據(jù)B、E是半圓弧的三等分點求出圓心角∠BOD的度數(shù),再利用弧長公式求出半圓的半徑R,再利用圓周角定理求出各邊長,通過轉(zhuǎn)化將陰影部分的面積轉(zhuǎn)化為S△ABC﹣S扇形BOE,然后分別求出面積相減即可得出答案.【題目詳解】解:連接BD,BE,BO,EO,∵B,E是半圓弧的三等分點,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAD=∠EBA=30°,∴BE∥AD,∵的長為,∴解得:R=4,∴AB=ADcos30°=,∴BC=AB=,∴AC=BC=6,∴S△ABC=×BC×AC=××6=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面積相等,∴圖中陰影部分的面積為:S△ABC﹣S扇形BOE=故選:D.【題目點撥】本題主要考查弧長公式,扇形面積公式,圓周角定理等,掌握圓的相關(guān)性質(zhì)是解題的關(guān)鍵.11、D【解題分析】
直接利用同底數(shù)冪的乘法運算法則計算得出答案.【題目詳解】解:,故選D.【題目點撥】此題主要考查了同底數(shù)冪的乘法運算,正確掌握運算法則是解題關(guān)鍵.12、A【解題分析】
根據(jù)圓內(nèi)接四邊形的任意一個外角等于它的內(nèi)對角求出∠A,根據(jù)圓周角定理計算即可.【題目詳解】四邊形ABCE內(nèi)接于⊙O,,由圓周角定理可得,,故選:A.【題目點撥】本題考查的知識點是圓的內(nèi)接四邊形性質(zhì),解題關(guān)鍵是熟記圓內(nèi)接四邊形的任意一個外角等于它的內(nèi)對角(就是和它相鄰的內(nèi)角的對角).二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2【解題分析】
要求絲線的長,需將圓柱的側(cè)面展開,進而根據(jù)“兩點之間線段最短”得出結(jié)果,在求線段長時,根據(jù)勾股定理計算即可.【題目詳解】解:如圖,把圓柱的側(cè)面展開,得到矩形,則這圈金屬絲的周長最小為2AC的長度.∵圓柱底面的周長為6cm,圓柱高為2cm,∴AB=2cm,BC=BC′=3cm,∴AC2=22+32=13,∴AC=cm,∴這圈金屬絲的周長最小為2AC=2cm.故答案為2.【題目點撥】本題考查了平面展開?最短路徑問題,圓柱的側(cè)面展開圖是一個矩形,此矩形的長等于圓柱底面周長,高等于圓柱的高,本題就是把圓柱的側(cè)面展開成矩形,“化曲面為平面”,用勾股定理解決.14、22.5°【解題分析】
四邊形ABCD是矩形,AC=BD,OA=OC,OB=OD,OA=OB═OC,∠OAD=∠ODA,∠OAB=∠OBA,∠AOE=∠OAD+∠ODA=2∠OAD,∠EAC=2∠CAD,∠EAO=∠AOE,AE⊥BD,∠AEO=90°,∠AOE=45°,∠OAB=∠OBA=67.5°,即∠BAE=∠OAB﹣∠OAE=22.5°.考點:矩形的性質(zhì);等腰三角形的性質(zhì).15、2【解題分析】
原式利用立方根定義,以及絕對值的代數(shù)意義計算即可求出值.【題目詳解】解:原式=3﹣1=2,故答案為:2【題目點撥】此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關(guān)鍵.16、1【解題分析】試題解析:如圖,∵a∥b,∠3=40°,∴∠4=∠3=40°.∵∠1=∠2+∠4=110°,∴∠2=110°-∠4=110°-40°=1°.故答案為:1.17、3×1【解題分析】因為一粒紐扣電池能污染600立方米的水,如果每名學(xué)生一年丟棄一粒紐扣電池,那么被該班學(xué)生一年丟棄的紐扣電池能污染的水就是:600×50=30000,用科學(xué)記數(shù)法表示為3×1立方米.
故答案為3×1.18、(3,1)【解題分析】分析:已知拋物線解析式為頂點式,可直接寫出頂點坐標.詳解:∵y=(x﹣3)2+1為拋物線的頂點式,根據(jù)頂點式的坐標特點可知,拋物線的頂點坐標為(3,1).故答案為(3,1).點睛:主要考查了拋物線頂點式的運用.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、OD=6.【解題分析】
(1)根據(jù)有兩個角相等的三角形相似,直接列出比例式,求出OD的長,即可解決問題.【題目詳解】在△AOB與△COD中,,∴△AOB~△COD,∴,∴,∴OD=6.【題目點撥】該題主要考查了相似三角形的判定及其性質(zhì)的應(yīng)用問題;解題的關(guān)鍵是準確找出圖形中的對應(yīng)元素,正確列出比例式;對分析問題解決問題的能力提出了一定的要求.20、(1)詳見解析;(2)【解題分析】
(1)根據(jù)題意平分可得,從而證明即可解答(2)由(1)可知,再根據(jù)四邊形是平行四邊形可得,過點作延長線于點,再根據(jù)勾股定理即可解答【題目詳解】(1)證明:平分又又(2)四邊形是平行四邊形,為等邊三角形過點作延長線于點.在中,【題目點撥】此題考查三角形全等的判定與性質(zhì),勾股定理,平行四邊形的性質(zhì),解題關(guān)鍵在于作好輔助線21、(1)見解析;(2)PQmin=7,PQmax=13;(3)Smin=,Smax=18.【解題分析】
(1)根據(jù)全等三角形判定定理求解即可.(2)以E為圓心,以5為半徑畫圓,①當E、P、Q三點共線時最PQ最小,②當P點在位置時PQ最大,分類討論即可求解.(3)以E為圓心,以2為半徑畫圓,分類討論出P點在位置時,四邊形PADC面積的最值即可.【題目詳解】(1)當P為AD中點時,,△BCP為等腰三角形.(2)以E為圓心,以5為半徑畫圓①當E、P、Q三點共線時最PQ最小,PQ的最小值是12-5=7.②當P點在位置時PQ最大,PQ的最大值是(3)以E為圓心,以2為半徑畫圓.當點p為位置時,四邊形PADC面積最大.當點p為位置時,四邊形PADC最小=四邊形+三角形=.【題目點撥】本題主要考查了等腰三角形性質(zhì),直線,面積最值問題,數(shù)形結(jié)合思想是解題關(guān)鍵.22、53【解題分析】
(1)原式利用二次根式的性質(zhì),零指數(shù)冪法則,絕對值的代數(shù)意義,以及特殊角的三角函數(shù)值進行化簡即可得到結(jié)果.【題目詳解】原式=33=33=53【題目點撥】此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關(guān)鍵.23、(1)3+【解題分析】
(1)如圖1中,在AB上取一點M,使得BM=ME,連接ME.,設(shè)AE=x,則ME=BM=2x,AM=3x,根據(jù)AB2+AE2=BE2,可得方程(2x+3x)2+x2=22,解方程即可解決問題.
(2)如圖2中,作CQ⊥AC,交AF的延長線于Q,首先證明EG=MG,再證明FM=FQ即可解決問題.【題目詳解】解:如圖1中,在AB上取一點M,使得BM=ME,連接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,設(shè)AE=x,則ME=BM=2x,AM=3x,∵AB2+AE2=BE2,∴2x+3∴x=6-∴AB=AC=(2+3)?6-∴BC=2AB=3+1.作CQ⊥AC,交AF的延長線于Q,∵AD=AE,AB=AC,∠BAE=∠CAD,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD,∵∠BAC=90°,F(xiàn)G⊥CD,∴∠AEB=∠CMF,∴∠GEM=∠GME,∴EG=MG,∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,∴△ABE≌△CAQ(ASA),∴BE=AQ,∠AEB=∠Q,∴∠CMF=∠Q,∵∠MCF=∠QCF=45°,CF=CF,∴△CMF≌△CQF(AAS),∴FM=FQ,∴BE=AQ=AF+FQ=AF=FM,∵EG=MG,∴BG=BE+EG=AF+FM+MG=AF+FG.【題目點撥】本題考查全等三角形的判定和性質(zhì)、直角三角形斜邊中線定理,等腰直角三角形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題.24、(1);(2)見解析;(3)【解題分析】
(1)過點C作CE∥OA交BD于點E,即可得△BCE∽△BOD,根據(jù)相似三角形的性質(zhì)可得,再證明△ECP≌△DAP,由此即可求得的值;(2)過點D作DF∥BO交AC于點F,即可得,,由點C為OB的中點可得BC=OC,即可證得;(3)由(2)可知=,設(shè)AD=t,則BO=AO=4t,OD=3t,根據(jù)勾股定理求得BD=5t,即可得PD=t,PB=4t,所以PD=AD,從而得∠A=∠APD=∠BPC,所以tan∠BPC=tan∠A=.【題目詳解】(1)如圖1,過點C作CE∥OA交BD于點E,∴△BCE∽△BOD,∴=,又BC=BO,∴CE=DO.∵CE∥OA,∴∠ECP=∠DAP,又∠EPC=∠DPA,PA=PC,∴△ECP≌△DAP,∴AD=CE=DO,即=;(2)如圖2,過點D作DF∥BO交AC于點F,則=,=.∵點C為OB的中點,∴BC=OC,∴=;(3)如圖2,∵=,由(2)可知==.設(shè)AD=t,則BO=AO=4t,OD=3t,∵AO⊥BO,即∠AOB=90°,∴BD==5t,∴PD=t,PB=4t,∴PD=AD,∴∠A=∠APD=∠BPC,則tan∠BPC=tan∠A==.【題目點撥】本題考查了相似三角形的判定與性質(zhì),準確作出輔助線,構(gòu)造相似三角形是解決本題的關(guān)鍵,也是求解的難點.25、(1)見解析;(2).【解題分析】
(1)連接OC,根據(jù)等腰三角形的性質(zhì)得到∠OCB=∠B,∠OCB=∠F,根據(jù)垂徑定理得到OF⊥BC,根據(jù)余角的性質(zhì)得到∠OCF=90°,于是得到結(jié)論;
(2)過D作DH⊥AB于H,根據(jù)三角形的中位線的想知道的OD=AC,根據(jù)平行四邊形的性質(zhì)得到DF=AC,設(shè)OD=x,得到AC=DF=2x,根據(jù)射影定理得到CD=x,求得BD=x,根據(jù)勾股定理得到AD=x,于是得到結(jié)論.【題目詳解】解:(1)連接OC,
∵OC=OB,
∴∠OCB=∠B,
∵∠B=∠F,
∴∠OCB=∠F,
∵D為BC的中點,
∴OF⊥BC,
∴∠F+∠FCD=90°,
∴∠OCB+∠FCD=90°,
∴∠OCF=90°,
∴CF為⊙O的切線;
(2)過D作DH⊥AB于H,
∵AO=OB,CD=DB,
∴OD=AC,
∵四邊形ACFD是平行四邊形,
∴DF=AC,
設(shè)OD=x,
∴AC=DF=2x,
∵∠OCF=90°,CD⊥OF,
∴CD2=OD?DF=2x2,
∴CD=x,
∴BD=x,
∴AD=x,
∵OD=x,BD=x,
∴OB=x,
∴DH=x,
∴sin∠BAD==.【題目點撥】本題考查了切線的判定和性質(zhì),平行四邊形的性質(zhì),垂徑定理,射影定理,勾股定理,三角函數(shù)的定義,正確的作出輔助線是解題的關(guān)鍵.26、(1)(1,4)(2)(0,)或(0,-1)【解題分析】試題分析:(1)先求得點C的坐標,再由OA=OC得到點A的坐標,再根據(jù)拋物線的對稱性得到點B的坐標,利用待定系數(shù)法求得解析式后再進行配方即可得到頂點坐標;(2)由OC//PM,可得∠PMC=∠MCO,求tan∠MCO即可;(3)分情況進行討論即可得.試題解析:(1)當x=0時,拋物線y=ax2+bx+3=3,所以點C坐標為(0,3),∴OC=3,∵OA=OC,∴OA=3,∴A(3,0),∵A、B關(guān)于x=1對稱,∴B(-1,0),∵A、B在拋物線y=ax2+bx+3上,∴,∴,∴拋物線解析式為:y=-x2+2x+3=-(x-1)2+4
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人才戰(zhàn)略活動方案
- 紅河職業(yè)技術(shù)學(xué)院《中國古代文學(xué)史四明清文學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 人教社舉辦講座活動方案
- 人武部捐資助學(xué)活動方案
- 人民銀行內(nèi)控活動方案
- 河南大學(xué)《鋼結(jié)構(gòu)基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷
- 江西旅游商貿(mào)職業(yè)學(xué)院《分子模擬課程設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷
- 沈陽工業(yè)大學(xué)《外國美術(shù)通史》2023-2024學(xué)年第二學(xué)期期末試卷
- 頁巖氣開采新技術(shù)在2025年環(huán)境效益與風險控制評估分析
- 甘肅財貿(mào)職業(yè)學(xué)院《篆書2》2023-2024學(xué)年第二學(xué)期期末試卷
- 華為智慧油田解決方案
- 高校新教師科研能力培養(yǎng)方案
- 行測圖形推理1000題庫帶答案
- 老舊小區(qū)路燈改造施工方案
- 《大學(xué)生社交禮儀》課件
- DB11∕T 1772-2020 地源熱泵系統(tǒng)評價技術(shù)規(guī)范
- 電瓶車以租代購協(xié)議書范文范本
- 契約戀愛協(xié)議書范本范本電子版
- 2023醫(yī)療質(zhì)量安全核心制度要點釋義(第二版)對比版
- 2022年廣西百色市中考物理試題(含答案解析)
- 2024年服裝輔料項目可行性研究報告
評論
0/150
提交評論