2024屆內(nèi)蒙古呼倫貝爾市莫旗畢業(yè)升學考試模擬卷數(shù)學卷含解析_第1頁
2024屆內(nèi)蒙古呼倫貝爾市莫旗畢業(yè)升學考試模擬卷數(shù)學卷含解析_第2頁
2024屆內(nèi)蒙古呼倫貝爾市莫旗畢業(yè)升學考試模擬卷數(shù)學卷含解析_第3頁
2024屆內(nèi)蒙古呼倫貝爾市莫旗畢業(yè)升學考試模擬卷數(shù)學卷含解析_第4頁
2024屆內(nèi)蒙古呼倫貝爾市莫旗畢業(yè)升學考試模擬卷數(shù)學卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆內(nèi)蒙古呼倫貝爾市莫旗畢業(yè)升學考試模擬卷數(shù)學卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,兩根竹竿AB和AD斜靠在墻CE上,量得∠ABC=,∠ADC=,則竹竿AB與AD的長度之比為A. B. C. D.2.已知拋物線y=ax2+bx+c與x軸交于(x1,0)、(x2,0)兩點,且0<x1<1,1<x2<2與y軸交于(0,-2),下列結(jié)論:①2a+b>1;②a+b<2;③3a+b>0;④a<-1,其中正確結(jié)論的個數(shù)為()A.1個 B.2個 C.3個 D.4個3.在如圖的計算程序中,y與x之間的函數(shù)關(guān)系所對應的圖象大致是()A. B. C. D.4.某班選舉班干部,全班有1名同學都有選舉權(quán)和被選舉權(quán),他們的編號分別為1,2,…,1.老師規(guī)定:同意某同學當選的記“1”,不同意(含棄權(quán))的記“0”.如果令其中i=1,2,…,1;j=1,2,…,1.則a1,1a1,2+a2,1a2,2+a3,1a3,2+…+a1,1a1,2表示的實際意義是()A.同意第1號或者第2號同學當選的人數(shù)B.同時同意第1號和第2號同學當選的人數(shù)C.不同意第1號或者第2號同學當選的人數(shù)D.不同意第1號和第2號同學當選的人數(shù)5.已知拋物線y=ax2﹣(2a+1)x+a﹣1與x軸交于A(x1,0),B(x2,0)兩點,若x1<1,x2>2,則a的取值范圍是()A.a(chǎn)<3 B.0<a<3 C.a(chǎn)>﹣3 D.﹣3<a<06.如圖所示的兩個四邊形相似,則α的度數(shù)是()A.60° B.75° C.87° D.120°7.如圖,在中,點D為AC邊上一點,則CD的長為()A.1 B. C.2 D.8.二次函數(shù)y=3(x﹣1)2+2,下列說法正確的是()A.圖象的開口向下B.圖象的頂點坐標是(1,2)C.當x>1時,y隨x的增大而減小D.圖象與y軸的交點坐標為(0,2)9.已知a=(+1)2,估計a的值在()A.3和4之間 B.4和5之間 C.5和6之間 D.6和7之間10.某商品的進價為每件元.當售價為每件元時,每星期可賣出件,現(xiàn)需降價處理,為占有市場份額,且經(jīng)市場調(diào)查:每降價元,每星期可多賣出件.現(xiàn)在要使利潤為元,每件商品應降價()元.A.3 B.2.5 C.2 D.5二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,△ABC是⊙O的內(nèi)接三角形,AD是⊙O的直徑,∠ABC=50°,則∠CAD=________

.12.閱讀材料:如圖,C為線段BD上一動點,分別過點B、D作AB⊥BD,ED⊥BD,連接AC、EC.設CD=x,若AB=4,DE=2,BD=8,則可用含x的代數(shù)式表示AC+CE的長為.然后利用幾何知識可知:當A、C、E在一條直線上時,x=時,AC+CE的最小值為1.根據(jù)以上閱讀材料,可構(gòu)圖求出代數(shù)式的最小值為_____.13.如圖,在矩形ABCD中,AB=4,AD=6,E是AB邊的中點,F(xiàn)是線段BC邊上的動點,將△EBF沿EF所在直線折疊得到△EB′F,連接B′D,則B′D的最小值是______.14.當﹣4≤x≤2時,函數(shù)y=﹣(x+3)2+2的取值范圍為_____________.15.如圖,已知△ABC和△ADE均為等邊三角形,點OAC的中點,點D在A射線BO上,連接OE,EC,若AB=4,則OE的最小值為_____.16.如圖,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,點M、N分別在線段AC、AB上,將△ANM沿直線MN折疊,使點A的對應點D恰好落在線段BC上,當△DCM為直角三角形時,折痕MN的長為__.三、解答題(共8題,共72分)17.(8分)某電器超市銷售每臺進價分別為200元,170元的A,B兩種型號的電風扇,表中是近兩周的銷售情況:銷售時段銷售數(shù)量銷售收入A種型號B種型號第一周3臺5臺1800元第二周4臺10臺3100元(進價、售價均保持不變,利潤=銷售收入-進貨成本)(1)求A,B兩種型號的電風扇的銷售單價.(2)若超市準備用不多于5400元的金額再采購這兩種型號的電風扇共30臺,則A種型號的電風扇最多能采購多少臺?(3)在(2)的條件下,超市銷售完這30臺電風扇能否實現(xiàn)利潤為1400元的目標?若能,請給出相應的采購方案;若不能,請說明理由.18.(8分)如圖,已知正方形ABCD,E是AB延長線上一點,F(xiàn)是DC延長線上一點,且滿足BF=EF,將線段EF繞點F順時針旋轉(zhuǎn)90°得FG,過點B作FG的平行線,交DA的延長線于點N,連接NG.求證:BE=2CF;試猜想四邊形BFGN是什么特殊的四邊形,并對你的猜想加以證明.19.(8分)如圖,在△ABC中,∠C=90°,以AB上一點O為圓心,OA長為半徑的圓恰好與BC相切于點D,分別交AC,AB于點E,F(xiàn).(1)若∠B=30°,求證:以A,O,D,E為頂點的四邊形是菱形;(2)填空:若AC=6,AB=10,連接AD,則⊙O的半徑為,AD的長為.20.(8分)問題探究(1)如圖①,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,則線段BE、EF、FD之間的數(shù)量關(guān)系為;(2)如圖②,在△ADC中,AD=2,CD=4,∠ADC是一個不固定的角,以AC為邊向△ADC的另一側(cè)作等邊△ABC,連接BD,則BD的長是否存在最大值?若存在,請求出其最大值;若不存在,請說明理由;問題解決(3)如圖③,在四邊形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足為點D,則對角線AC的長是否存在最大值?若存在,請求出其最大值;若不存在,請說明理由.21.(8分)先化簡,再求值:(+)÷,其中x=22.(10分)化簡分式,并從0、1、2、3這四個數(shù)中取一個合適的數(shù)作為x的值代入求值.23.(12分)如圖,在一次測量活動中,小華站在離旗桿底部(B處)6米的D處,仰望旗桿頂端A,測得仰角為60°,眼睛離地面的距離ED為1.5米.試幫助小華求出旗桿AB的高度.(結(jié)果精確到0.1米,).24.如圖,已知二次函數(shù)的圖象與x軸交于A,B兩點,與y軸交于點C,的半徑為,P為上一動點.點B,C的坐標分別為______,______;是否存在點P,使得為直角三角形?若存在,求出點P的坐標;若不存在,請說明理由;連接PB,若E為PB的中點,連接OE,則OE的最大值______.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解題分析】

在兩個直角三角形中,分別求出AB、AD即可解決問題;【題目詳解】在Rt△ABC中,AB=,在Rt△ACD中,AD=,∴AB:AD=:=,故選B.【題目點撥】本題考查解直角三角形的應用、銳角三角函數(shù)等知識,解題的關(guān)鍵是學會利用參數(shù)解決問題.2、A【解題分析】

如圖,且圖像與y軸交于點,可知該拋物線的開口向下,即,①當時,故①錯誤.②由圖像可知,當時,∴∴故②錯誤.③∵∴,又∵,∴,∴,∴,故③錯誤;④∵,,又∵,∴.故④正確.故答案選A.【題目點撥】本題考查二次函數(shù)系數(shù)符號的確定由拋物線的開口方向、對稱軸和拋物線與坐標軸的交點確定.3、A【解題分析】函數(shù)→一次函數(shù)的圖像及性質(zhì)4、B【解題分析】

先寫出同意第1號同學當選的同學,再寫出同意第2號同學當選的同學,那么同時同意1,2號同學當選的人數(shù)是他們對應相乘再相加.【題目詳解】第1,2,3,……,1名同學是否同意第1號同學當選依次由a1,1,a2,1,a3,1,…,a1,1來確定,是否同意第2號同學當選依次由a1,2,a2,2,a3,2,…,a1,2來確定,∴a1,1a1,2+a2,1a2,2+a3,1a3,2+…+a1,1a1,2表示的實際意義是同時同意第1號和第2號同學當選的人數(shù),故選B.【題目點撥】本題考查了推理應用題,題目比較新穎,是基礎(chǔ)題.5、B【解題分析】由已知拋物線求出對稱軸,解:拋物線:,對稱軸,由判別式得出a的取值范圍.,,∴,①,.②由①②得.故選B.6、C【解題分析】【分析】根據(jù)相似多邊形性質(zhì):對應角相等.【題目詳解】由已知可得:α的度數(shù)是:360?-60?-75?-138?=87?故選C【題目點撥】本題考核知識點:相似多邊形.解題關(guān)鍵點:理解相似多邊形性質(zhì).7、C【解題分析】

根據(jù)∠DBC=∠A,∠C=∠C,判定△BCD∽△ACB,根據(jù)相似三角形對應邊的比相等得到代入求值即可.【題目詳解】∵∠DBC=∠A,∠C=∠C,∴△BCD∽△ACB,∴∴∴CD=2.故選:C.【題目點撥】主要考查相似三角形的判定與性質(zhì),掌握相似三角形的判定定理是解題的關(guān)鍵.8、B【解題分析】

由拋物線解析式可求得其開口方向、頂點坐標、最值及增減性,則可判斷四個選項,可求得答案.【題目詳解】解:A、因為a=3>0,所以開口向上,錯誤;B、頂點坐標是(1,2),正確;C、當x>1時,y隨x增大而增大,錯誤;D、圖象與y軸的交點坐標為(0,5),錯誤;故選:B.【題目點撥】考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點式是解題的關(guān)鍵,即在y=a(x﹣h)2+k中,對稱軸為x=h,頂點坐標為(h,k).9、D【解題分析】

首先計算平方,然后再確定的范圍,進而可得4+的范圍.【題目詳解】解:a=×(7+1+2)=4+,∵2<<3,∴6<4+<7,∴a的值在6和7之間,故選D.【題目點撥】此題主要考查了估算無理數(shù)的大小,用有理數(shù)逼近無理數(shù),求無理數(shù)的近似值.10、A【解題分析】

設售價為x元時,每星期盈利為6125元,那么每件利潤為(x-40),原來售價為每件60元時,每星期可賣出300件,所以現(xiàn)在可以賣出[300+20(60-x)]件,然后根據(jù)盈利為6120元即可列出方程解決問題.【題目詳解】解:設售價為x元時,每星期盈利為6120元,

由題意得(x-40)[300+20(60-x)]=6120,

解得:x1=57,x2=1,

由已知,要多占市場份額,故銷售量要盡量大,即售價要低,故舍去x2=1.

∴每件商品應降價60-57=3元.

故選:A.【題目點撥】本題考查了一元二次方程的應用.此題找到關(guān)鍵描述語,找到等量關(guān)系準確的列出方程是解決問題的關(guān)鍵.此題要注意判斷所求的解是否符合題意,舍去不合題意的解.二、填空題(本大題共6個小題,每小題3分,共18分)11、40°【解題分析】連接CD,則∠ADC=∠ABC=50°,∵AD是⊙O的直徑,∴∠ACD=90°,∴∠CAD+∠ADC=90°,∴∠CAD=90°-∠ADC=90°-50°=40°,故答案為:40°.12、4【解題分析】

根據(jù)已知圖象,重新構(gòu)造直角三角形,利用三角形相似得出CD的長,進而利用勾股定理得出最短路徑問題.【題目詳解】如圖所示:C為線段BD上一動點,分別過點B、D作AB⊥BD,ED⊥BD,連接AC、EC.設CD=x,若AB=5,DE=3,BD=12,當A,C,E,在一條直線上,AE最短,∵AB⊥BD,ED⊥BD,∴AB∥DE,∴△ABC∽EDC,∴,∴,解得:DC=.即當x=時,代數(shù)式有最小值,此時為:.故答案是:4.【題目點撥】考查最短路線問題,利用了數(shù)形結(jié)合的思想,可通過構(gòu)造直角三角形,利用勾股定理求解.13、1﹣1【解題分析】

如圖所示點B′在以E為圓心EA為半徑的圓上運動,當D、B′、E共線時時,此時B′D的值最小,根據(jù)勾股定理求出DE,根據(jù)折疊的性質(zhì)可知B′E=BE=1,即可求出B′D.【題目詳解】如圖所示點B′在以E為圓心EA為半徑的圓上運動,當D、B′、E共線時時,此時B′D的值最小,根據(jù)折疊的性質(zhì),△EBF≌△EB′F,∴EB′⊥B′F,∴EB′=EB,∵E是AB邊的中點,AB=4,∴AE=EB′=1,∵AD=6,∴DE=,∴B′D=1﹣1.【題目點撥】本題考查了折疊的性質(zhì)、全等三角形的判定與性質(zhì)、兩點之間線段最短的綜合運用;確定點B′在何位置時,B′D的值最小是解題的關(guān)鍵.14、-23≤y≤2【解題分析】

先根據(jù)a=-1判斷出拋物線的開口向下,故有最大值,可知對稱軸x=-3,再根據(jù)-4≤x≤2,可知當x=-3時y最大,把x=2時y最小代入即可得出結(jié)論.【題目詳解】解:∵a=-1,

∴拋物線的開口向下,故有最大值,

∵對稱軸x=-3,

∴當x=-3時y最大為2,

當x=2時y最小為-23,

∴函數(shù)y的取值范圍為-23≤y≤2,故答案為:-23≤y≤2.【題目點撥】本題考查二次函數(shù)的性質(zhì),掌握拋物線的開口方向、對稱軸以及增減性是解題關(guān)鍵.15、1【解題分析】

根據(jù)等邊三角形的性質(zhì)可得OC=AC,∠ABD=30°,根據(jù)“SAS”可證△ABD≌△ACE,可得∠ACE=30°=∠ABD,當OE⊥EC時,OE的長度最小,根據(jù)直角三角形的性質(zhì)可求OE的最小值.【題目詳解】解:∵△ABC的等邊三角形,點O是AC的中點,∴OC=AC,∠ABD=30°∵△ABC和△ADE均為等邊三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)∴∠ACE=30°=∠ABD當OE⊥EC時,OE的長度最小,∵∠OEC=90°,∠ACE=30°∴OE最小值=OC=AB=1,故答案為1【題目點撥】本題考查了全等三角形的判定和性質(zhì),等邊三角形的性質(zhì),熟練運用全等三角形的判定是本題的關(guān)鍵.16、或【解題分析】分析:依據(jù)△DCM為直角三角形,需要分兩種情況進行討論:當∠CDM=90°時,△CDM是直角三角形;當∠CMD=90°時,△CDM是直角三角形,分別依據(jù)含30°角的直角三角形的性質(zhì)以及等腰直角三角形的性質(zhì),即可得到折痕MN的長.詳解:分兩種情況:①如圖,當∠CDM=90°時,△CDM是直角三角形,∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,∴∠C=30°,AB=AC=+2,由折疊可得,∠MDN=∠A=60°,∴∠BDN=30°,∴BN=DN=AN,∴BN=AB=,∴AN=2BN=,∵∠DNB=60°,∴∠ANM=∠DNM=60°,∴∠AMN=60°,∴AN=MN=;②如圖,當∠CMD=90°時,△CDM是直角三角形,由題可得,∠CDM=60°,∠A=∠MDN=60°,∴∠BDN=60°,∠BND=30°,∴BD=DN=AN,BN=BD,又∵AB=+2,∴AN=2,BN=,過N作NH⊥AM于H,則∠ANH=30°,∴AH=AN=1,HN=,由折疊可得,∠AMN=∠DMN=45°,∴△MNH是等腰直角三角形,∴HM=HN=,∴MN=,故答案為:或.點睛:本題考查了翻折變換-折疊問題,等腰直角三角形的性質(zhì),正確的作出圖形是解題的關(guān)鍵.折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.三、解答題(共8題,共72分)17、(1)A,B兩種型號電風扇的銷售單價分別為250元/臺、210元/臺;(2)A種型號的電風扇最多能采購10臺;(3)在(2)的條件下超市不能實現(xiàn)利潤為1400元的目標.【解題分析】

(1)設A、B兩種型號電風扇的銷售單價分別為x元、y元,根據(jù)3臺A型號5臺B型號的電扇收入1800元,4臺A型號10臺B型號的電扇收入3100元,列方程組求解;(2)設采購A種型號電風扇a臺,則采購B種型號電風扇(30-a)臺,根據(jù)金額不多余5400元,列不等式求解;(3)設利潤為1400元,列方程求出a的值為20,不符合(2)的條件,可知不能實現(xiàn)目標.【題目詳解】(1)設A,B兩種型號電風扇的銷售單價分別為x元/臺、y元/臺.依題意,得解得答:A,B兩種型號電風扇的銷售單價分別為250元/臺、210元/臺.(2)設采購A種型號的電風扇a臺,則采購B種型號的電風扇(30-a)臺.依題意,得200a+170(30-a)≤5400,解得a≤10.答:A種型號的電風扇最多能采購10臺.(3)依題意,有(250-200)a+(210-170)(30-a)=1400,解得a=20.∵a≤10,∴在(2)的條件下超市不能實現(xiàn)利潤為1400元的目標.【題目點撥】本題考查了二元一次方程組和一元一次不等式的應用,解答本題的關(guān)鍵是讀懂題意,設出未知數(shù),找出合適的等量關(guān)系和不等關(guān)系,列方程組和不等式求解.18、(1)見解析;(2)四邊形BFGN是菱形,理由見解析.【解題分析】

(1)過F作FH⊥BE于點H,可證明四邊形BCFH為矩形,可得到BH=CF,且H為BE中點,可得BE=2CF;(2)由條件可證明△ABN≌△HFE,可得BN=EF,可得到BN=GF,且BN∥FG,可證得四邊形BFGN為菱形.【題目詳解】(1)證明:過F作FH⊥BE于H點,在四邊形BHFC中,∠BHF=∠CBH=∠BCF=90°,所以四邊形BHFC為矩形,∴CF=BH,∵BF=EF,F(xiàn)H⊥BE,∴H為BE中點,∴BE=2BH,∴BE=2CF;(2)四邊形BFGN是菱形.證明:∵將線段EF繞點F順時針旋轉(zhuǎn)90°得FG,∴EF=GF,∠GFE=90°,∴∠EFH+∠BFH+∠GFB=90°∵BN∥FG,∴∠NBF+∠GFB=180°,∴∠NBA+∠ABC+∠CBF+∠GFB=180°,∵∠ABC=90°,∴∠NBA+∠CBF+∠GFB=180°?90°=90°,由BHFC是矩形可得BC∥HF,∴∠BFH=∠CBF,∴∠EFH=90°?∠GFB?∠BFH=90°?∠GFB?∠CBF=∠NBA,由BHFC是矩形可得HF=BC,∵BC=AB,∴HF=AB,在△ABN和△HFE中,,∴△ABN≌△HFE,∴NB=EF,∵EF=GF,∴NB=GF,又∵NB∥GF,∴NBFG是平行四邊形,∵EF=BF,∴NB=BF,∴平行四邊NBFG是菱形.點睛:本題主要考查正方形的性質(zhì)及全等三角形的判定和性質(zhì),矩形的判定與性質(zhì),菱形的判定等,作出輔助線是解決(1)的關(guān)鍵.在(2)中證得△ABN≌△HFE是解題的關(guān)鍵.19、(1)見解析;(2)【解題分析】

(1)先通過證明△AOE為等邊三角形,得出AE=OD,再根據(jù)“同位角相等,兩直線平行”證明AE//OD,從而證得四邊形AODE是平行四邊形,再根據(jù)“一組鄰邊相等的平行四邊形為菱形”即可得證.(2)利用在Rt△OBD中,sin∠B==可得出半徑長度,在Rt△ODB中BD=,可求得BD的長,由CD=CB﹣BD可得CD的長,在RT△ACD中,AD=,即可求出AD長度.【題目詳解】解:(1)證明:連接OE、ED、OD,在Rt△ABC中,∵∠B=30°,∴∠A=60°,∵OA=OE,∴△AEO是等邊三角形,∴AE=OE=AO∵OD=OA,∴AE=OD∵BC是圓O的切線,OD是半徑,∴∠ODB=90°,又∵∠C=90°∴AC∥OD,又∵AE=OD∴四邊形AODE是平行四邊形,∵OD=OA∴四邊形AODE是菱形.(2)在Rt△ABC中,∵AC=6,AB=10,∴sin∠B==,BC=8∵BC是圓O的切線,OD是半徑,∴∠ODB=90°,在Rt△OBD中,sin∠B==,∴OB=OD∵AO+OB=AB=10,∴OD+OD=10∴OD=∴OB=OD=∴BD==5∴CD=CB﹣BD=3∴AD===3.【題目點撥】本題主要考查圓中的計算問題、菱形以及相似三角形的判定與性質(zhì)20、(1)BE+DF=EF;(2)存在,BD的最大值為6;(3)存在,AC的最大值為2+2.【解題分析】

(1)作輔助線,首先證明△ABE≌△ADG,再證明△AEF≌△AEG,進而得到EF=FG問題即可解決;(2)將△ABD繞著點B順時針旋轉(zhuǎn)60°,得到△BCE,連接DE,由旋轉(zhuǎn)可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根據(jù)DE<DC+CE,則當D、C、E三點共線時,DE存在最大值,問題即可解決;(3)以BC為邊作等邊三角形BCE,過點E作EF⊥BC于點F,連接DE,由旋轉(zhuǎn)的性質(zhì)得△DBE是等邊三角形,則DE=AC,根據(jù)在等邊三角形BCE中,EF⊥BC,可求出BF,EF,以BC為直徑作⊙F,則點D在⊙F上,連接DF,可求出DF,則AC=DE≤DF+EF,代入數(shù)值即可解決問題.【題目詳解】(1)如圖①,延長CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案為:BE+DF=EF;(2)存在.在等邊三角形ABC中,AB=BC,∠ABC=60°,如圖②,將△ABD繞著點B順時針旋轉(zhuǎn)60°,得到△BCE,連接DE.由旋轉(zhuǎn)可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等邊三角形,∴DE=BD,∴在△DCE中,DE<DC+CE=4+2=6,∴當D、C、E三點共線時,DE存在最大值,且最大值為6,∴BD的最大值為6;(3)存在.如圖③,以BC為邊作等邊三角形BCE,過點E作EF⊥BC于點F,連接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等邊三角形BCE中,EF⊥BC,∴BF=BC=2,∴EF=BF=×2=2,以BC為直徑作⊙F,則點D在⊙F上,連接DF,∴DF=BC=×4=2,∴AC=DE≤DF+EF=2+2,即AC的最大值為2+2.【題目點撥】本題考查了全等三角形的判定與性質(zhì)以及旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是熟練的掌握全等三角形的判定與性質(zhì)以及旋轉(zhuǎn)的性質(zhì).21、-【解題分析】

先根據(jù)分式混合運算的法則把原式進行化簡,再把x的值代入進行計算即可.【題目詳解】原式=[+]÷=[-+]÷=·=,當x=時,原式==-.【題目點撥】本題考查的是分式的化簡求值,熟知分式混合運算的法則是解答此題的關(guān)鍵.22、x取0時,為1或x取1時,為2【解題分析】試題分析:利用分式的運算,先對分式化簡單,再選擇使分式有意義的數(shù)代入求值即可.試題解析:解:原式=[]===x+1,∵x1-4≠0,x-2≠0,∴x≠1且x≠-1且x≠2,當x=0時,原式=1.或當x=1時,原式=2.23、11.9米【解題分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論