四川省南充市營山縣春城北實驗學(xué)校2024屆中考考前最后一卷數(shù)學(xué)試卷含解析_第1頁
四川省南充市營山縣春城北實驗學(xué)校2024屆中考考前最后一卷數(shù)學(xué)試卷含解析_第2頁
四川省南充市營山縣春城北實驗學(xué)校2024屆中考考前最后一卷數(shù)學(xué)試卷含解析_第3頁
四川省南充市營山縣春城北實驗學(xué)校2024屆中考考前最后一卷數(shù)學(xué)試卷含解析_第4頁
四川省南充市營山縣春城北實驗學(xué)校2024屆中考考前最后一卷數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

四川省南充市營山縣春城北實驗學(xué)校2024屆中考考前最后一卷數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.有理數(shù)a、b在數(shù)軸上的位置如圖所示,則下列結(jié)論中正確的是()A.a(chǎn)+b>0 B.a(chǎn)b>0 C.a(chǎn)﹣b<o(jì) D.a(chǎn)÷b>02.下列標(biāo)志中,可以看作是軸對稱圖形的是()A. B. C. D.3.商場將某種商品按原價的8折出售,仍可獲利20元.已知這種商品的進(jìn)價為140元,那么這種商品的原價是()A.160元B.180元C.200元D.220元4.正比例函數(shù)y=2kx的圖象如圖所示,則y=(k-2)x+1-k的圖象大致是()A.B.C.D.5.如圖,AB是⊙O的直徑,D,E是半圓上任意兩點,連接AD,DE,AE與BD相交于點C,要使△ADC與△BDA相似,可以添加一個條件.下列添加的條件中錯誤的是()A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD·CD6.據(jù)報道,南寧創(chuàng)客城已于2015年10月開城,占地面積約為14400平方米,目前已引進(jìn)創(chuàng)業(yè)團(tuán)隊30多家,將14400用科學(xué)記數(shù)法表示為()A.14.4×103 B.144×102 C.1.44×104 D.1.44×10﹣47.如圖,在正方形ABCD中,E為AB的中點,G,F(xiàn)分別為AD、BC邊上的點,若AG=1,BF=2,∠GEF=90°,則GF的長為()A.2 B.3 C.4 D.58.計算﹣8+3的結(jié)果是()A.﹣11 B.﹣5 C.5 D.119.如圖,在平行四邊形ABCD中,點E在邊DC上,DE:EC=3:1,連接AE交BD于點F,則△DEF的面積與△BAF的面積之比為()A.3:4 B.9:16 C.9:1 D.3:110.如圖,AB是⊙O的直徑,點E為BC的中點,AB=4,∠BED=120°,則圖中陰影部分的面積之和為()A.1 B. C. D.11.計算的結(jié)果是(

)A. B. C. D.212.如圖,點A為∠α邊上任意一點,作AC⊥BC于點C,CD⊥AB于點D,下列用線段比表示sinα的值,錯誤的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.矩形紙片ABCD中,AB=3cm,BC=4cm,現(xiàn)將紙片折疊壓平,使A與C重合,設(shè)折痕為EF,則重疊部分△AEF的面積等于_____.14.如圖,CD是Rt△ABC斜邊AB上的高,將△BCD沿CD折疊,B點恰好落在AB的中點E處,則∠A等于____度.15.如圖,在△ABC中,AB=AC,BE、AD分別是邊AC、BC上的高,CD=2,AC=6,那么CE=________.16.觀察下列一組數(shù):,它們是按一定規(guī)律排列的,那么這一組數(shù)的第n個數(shù)是_____.17.將拋物線y=2x2平移,使頂點移動到點P(﹣3,1)的位置,那么平移后所得新拋物線的表達(dá)式是_____.18.如圖,已知正方形ABCD中,∠MAN=45°,連接BD與AM,AN分別交于E,F(xiàn)點,則下列結(jié)論正確的有_____.①M(fèi)N=BM+DN②△CMN的周長等于正方形ABCD的邊長的兩倍;③EF1=BE1+DF1;④點A到MN的距離等于正方形的邊長⑤△AEN、△AFM都為等腰直角三角形.⑥S△AMN=1S△AEF⑦S正方形ABCD:S△AMN=1AB:MN⑧設(shè)AB=a,MN=b,則≥1﹣1.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元.經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:售價x/(元/千克)506070銷售量y/千克1008060(1)求y與x之間的函數(shù)表達(dá)式;設(shè)商品每天的總利潤為W(元),求W與x之間的函數(shù)表達(dá)式(利潤=收入-成本);試說明(2)中總利潤W隨售價x的變化而變化的情況,并指出售價為多少時獲得最大利潤,最大利潤是多少?20.(6分)已知:如圖,AB=AC,點D是BC的中點,AB平分∠DAE,AE⊥BE,垂足為E.求證:AD=AE.21.(6分)P是⊙O內(nèi)一點,過點P作⊙O的任意一條弦AB,我們把PA?PB的值稱為點P關(guān)于⊙O的“冪值”(1)⊙O的半徑為6,OP=1.①如圖1,若點P恰為弦AB的中點,則點P關(guān)于⊙O的“冪值”為_____;②判斷當(dāng)弦AB的位置改變時,點P關(guān)于⊙O的“冪值”是否為定值,若是定值,證明你的結(jié)論;若不是定值,求點P關(guān)于⊙0的“冪值”的取值范圍;(2)若⊙O的半徑為r,OP=d,請參考(1)的思路,用含r、d的式子表示點P關(guān)于⊙O的“冪值”或“冪值”的取值范圍_____;(3)在平面直角坐標(biāo)系xOy中,C(1,0),⊙C的半徑為3,若在直線y=x+b上存在點P,使得點P關(guān)于⊙C的“冪值”為6,請直接寫出b的取值范圍_____.22.(8分)某中學(xué)九年級甲、乙兩班商定舉行一次遠(yuǎn)足活動,、兩地相距10千米,甲班從地出發(fā)勻速步行到地,乙班從地出發(fā)勻速步行到地.兩班同時出發(fā),相向而行.設(shè)步行時間為小時,甲、乙兩班離地的距離分別為千米、千米,、與的函數(shù)關(guān)系圖象如圖所示,根據(jù)圖象解答下列問題:直接寫出、與的函數(shù)關(guān)系式;求甲、乙兩班學(xué)生出發(fā)后,幾小時相遇?相遇時乙班離地多少千米?甲、乙兩班相距4千米時所用時間是多少小時?23.(8分)如圖,建筑物AB的高為6cm,在其正東方向有個通信塔CD,在它們之間的地面點M(B,M,D三點在一條直線上)處測得建筑物頂端A、塔項C的仰角分別為37°和60°,在A處測得塔頂C的仰角為30°,則通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73,精確到0.1m)24.(10分)某紡織廠生產(chǎn)的產(chǎn)品,原來每件出廠價為80元,成本為60元.由于在生產(chǎn)過程中平均每生產(chǎn)一件產(chǎn)品有0.5的污水排出,現(xiàn)在為了保護(hù)環(huán)境,需對污水凈化處理后再排出.已知每處理1污水的費(fèi)用為2元,且每月排污設(shè)備損耗為8000元.設(shè)現(xiàn)在該廠每月生產(chǎn)產(chǎn)品x件,每月純利潤y元:(1)求出y與x的函數(shù)關(guān)系式.(純利潤=總收入-總支出)(2)當(dāng)y=106000時,求該廠在這個月中生產(chǎn)產(chǎn)品的件數(shù).25.(10分)今年3月12日植樹節(jié)期間,學(xué)校預(yù)購進(jìn)A,B兩種樹苗.若購進(jìn)A種樹苗3棵,B種樹苗5棵,需2100元;若購進(jìn)A種樹苗4棵,B種樹苗10棵,需3800元.求購進(jìn)A,B兩種樹苗的單價;若該學(xué)校準(zhǔn)備用不多于8000元的錢購進(jìn)這兩種樹苗共30棵,求A種樹苗至少需購進(jìn)多少棵.26.(12分)已知a+b=3,ab=2,求代數(shù)式a3b+2a2b2+ab3的值.27.(12分)我國古代《算法統(tǒng)宗》里有這樣一首詩:我問開店李三公,眾客都來到店中,一房七客多七客,一房九客一房空.詩中后兩句的意思是:如果每間客房住7人,那么有7人無房可??;如果每間客房住9人,那么就空出一間房.求該店有客房多少間?房客多少人?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解題分析】

利用數(shù)軸先判斷出a、b的正負(fù)情況以及它們絕對值的大小,然后再進(jìn)行比較即可.【題目詳解】解:由a、b在數(shù)軸上的位置可知:a<1,b>1,且|a|>|b|,∴a+b<1,ab<1,a﹣b<1,a÷b<1.故選:C.2、D【解題分析】

根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【題目詳解】解:A、不是軸對稱圖形,是中心對稱圖形,不符合題意;

B、不是軸對稱圖形,是中心對稱圖形,不符合題意;

C、不是軸對稱圖形,是中心對稱圖形,不符合題意;

D、是軸對稱圖形,符合題意.

故選D.【題目點撥】本題考查了中心對稱圖形和軸對稱圖形的定義,掌握中心對稱圖形與軸對稱圖形的概念,解答時要注意:判斷軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部沿對稱軸疊后可重合;判斷中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180度后與原圖重合.3、C【解題分析】

利用打折是在標(biāo)價的基礎(chǔ)之上,利潤是在進(jìn)價的基礎(chǔ)上,進(jìn)而得出等式求出即可.【題目詳解】解:設(shè)原價為x元,根據(jù)題意可得:80%x=140+20,解得:x=1.所以該商品的原價為1元;故選:C.【題目點撥】此題主要考查了一元一次方程的應(yīng)用,根據(jù)題意列出方程是解決問題的關(guān)鍵.4、B【解題分析】試題解析:由圖象可知,正比函數(shù)y=2kx的圖象經(jīng)過二、四象限,∴2k<0,得k<0,∴k?2<0,1?k>0,∴函數(shù)y=(k?2)x+1?k圖象經(jīng)過一、二、四象限,故選B.5、D【解題分析】

解:∵∠ADC=∠ADB,∠ACD=∠DAB,∴△ADC∽△BDA,故A選項正確;∵AD=DE,∴,∴∠DAE=∠B,∴△ADC∽△BDA,∴故B選項正確;∵AD2=BD?CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故C選項正確;∵CD?AB=AC?BD,∴CD:AC=BD:AB,但∠ACD=∠ABD不是對應(yīng)夾角,故D選項錯誤,故選:D.考點:1.圓周角定理2.相似三角形的判定6、C【解題分析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值大于10時,n是正數(shù);當(dāng)原數(shù)的絕對值小于1時,n是負(fù)數(shù).【題目詳解】14400=1.44×1.故選C.【題目點撥】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.7、B【解題分析】∵四邊形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴,又∵AE=BE,∴AE2=AG?BF=2,∴AE=(舍負(fù)),∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的長為3,故選B.【題目點撥】本題考查了相似三角形的性質(zhì)的應(yīng)用,利用勾股定理即可得解,解題的關(guān)鍵是證明△AEG∽△BFE.8、B【解題分析】

絕對值不等的異號加法,取絕對值較大的加數(shù)符號,并用較大的絕對值減去較小的絕對值.互為相反數(shù)的兩個數(shù)相加得1.依此即可求解.【題目詳解】解:?8+3=?2.故選B.【題目點撥】考查了有理數(shù)的加法,在進(jìn)行有理數(shù)加法運(yùn)算時,首先判斷兩個加數(shù)的符號:是同號還是異號,是否有1.從而確定用那一條法則.在應(yīng)用過程中,要牢記“先符號,后絕對值”.9、B【解題分析】

可證明△DFE∽△BFA,根據(jù)相似三角形的面積之比等于相似比的平方即可得出答案.【題目詳解】∵四邊形ABCD為平行四邊形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故選B.10、C【解題分析】連接AE,OD,OE.∵AB是直徑,∴∠AEB=90°.又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°.∵OA=OD.∴△AOD是等邊三角形.∴∠A=60°.又∵點E為BC的中點,∠AED=90°,∴AB=AC.∴△ABC是等邊三角形,∴△EDC是等邊三角形,且邊長是△ABC邊長的一半2,高是.∴∠BOE=∠EOD=60°,∴和弦BE圍成的部分的面積=和弦DE圍成的部分的面積.∴陰影部分的面積=.故選C.11、C【解題分析】

化簡二次根式,并進(jìn)行二次根式的乘法運(yùn)算,最后合并同類二次根式即可.【題目詳解】原式=3﹣2·=3﹣=.故選C.【題目點撥】本題主要考查二次根式的化簡以及二次根式的混合運(yùn)算.12、D【解題分析】【分析】根據(jù)在直角三角形中,銳角的正弦為對邊比斜邊,可得答案.【題目詳解】∵∠BDC=90°,∴∠B+∠BCD=90°,∵∠ACB=90°,即∠BCD+∠ACD=90°,∴∠ACD=∠B=α,A、在Rt△BCD中,sinα=,故A正確,不符合題意;B、在Rt△ABC中,sinα=,故B正確,不符合題意;C、在Rt△ACD中,sinα=,故C正確,不符合題意;D、在Rt△ACD中,cosα=,故D錯誤,符合題意,故選D.【題目點撥】本題考查銳角三角函數(shù)的定義及運(yùn)用:在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、7516【解題分析】試題分析:要求重疊部分△AEF的面積,選擇AF作為底,高就等于AB的長;而由折疊可知∠AEF=∠CEF,由平行得∠CEF=∠AFE,代換后,可知AE=AF,問題轉(zhuǎn)化為在Rt△ABE中求AE.因此設(shè)AE=x,由折疊可知,EC=x,BE=4﹣x,在Rt△ABE中,AB2+BE2=AE2,即32+(4﹣x)2=x2,解得:x=258,即AE=AF=25因此可求得S△AEF=12×AF×AB=12×考點:翻折變換(折疊問題)14、30【解題分析】試題分析:根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得:AE=CE,根據(jù)折疊可得:BC=CE,則BC=AE=BE=AB,則∠A=30°.考點:折疊圖形的性質(zhì)15、【解題分析】∵AB=AC,AD⊥BC,∴BD=CD=2,∵BE、AD分別是邊AC、BC上的高,∴∠ADC=∠BEC=90°,∵∠C=∠C,∴△ACD∽△BCE,∴,∴,∴CE=,故答案為.16、【解題分析】試題解析:根據(jù)題意得,這一組數(shù)的第個數(shù)為:故答案為點睛:觀察已知一組數(shù)發(fā)現(xiàn):分子為從1開始的連續(xù)奇數(shù),分母為從2開始的連續(xù)正整數(shù)的平方,寫出第個數(shù)即可.17、y=2(x+3)2+1【解題分析】

由于拋物線平移前后二次項系數(shù)不變,然后根據(jù)頂點式寫出新拋物線解析式.【題目詳解】拋物線y=2x2平移,使頂點移到點P(﹣3,1)的位置,所得新拋物線的表達(dá)式為y=2(x+3)2+1.故答案為:y=2(x+3)2+1【題目點撥】本題考查了二次函數(shù)圖象與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通??衫脙煞N方法:一是求出原拋物線上任意兩點平移后的坐標(biāo),利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點坐標(biāo),即可求出解析式.18、①②③④⑤⑥⑦.【解題分析】

將△ABM繞點A逆時針旋轉(zhuǎn),使AB與AD重合,得到△ADH.證明△MAN≌△HAN,得到MN=NH,根據(jù)三角形周長公式計算判斷①;判斷出BM=DN時,MN最小,即可判斷出⑧;根據(jù)全等三角形的性質(zhì)判斷②④;將△ADF繞點A順時針性質(zhì)90°得到△ABH,連接HE.證明△EAH≌△EAF,得到∠HBE=90°,根據(jù)勾股定理計算判斷③;根據(jù)等腰直角三角形的判定定理判斷⑤;根據(jù)等腰直角三角形的性質(zhì)、三角形的面積公式計算,判斷⑥,根據(jù)點A到MN的距離等于正方形ABCD的邊長、三角形的面積公式計算,判斷⑦.【題目詳解】將△ABM繞點A逆時針旋轉(zhuǎn),使AB與AD重合,得到△ADH.則∠DAH=∠BAM,∵四邊形ABCD是正方形,∴∠BAD=90°,∵∠MAN=45°,∴∠BAN+∠DAN=45°,∴∠NAH=45°,在△MAN和△HAN中,,∴△MAN≌△HAN,∴MN=NH=BM+DN,①正確;∵BM+DN≥1,(當(dāng)且僅當(dāng)BM=DN時,取等號)∴BM=DN時,MN最小,∴BM=b,∵DH=BM=b,∴DH=DN,∵AD⊥HN,∴∠DAH=∠HAN=11.5°,在DA上取一點G,使DG=DH=b,∴∠DGH=45°,HG=DH=b,∵∠DGH=45°,∠DAH=11.5°,∴∠AHG=∠HAD,∴AG=HG=b,∴AB=AD=AG+DG=b+b=b=a,∴,∴,當(dāng)點M和點B重合時,點N和點C重合,此時,MN最大=AB,即:,∴≤≤1,⑧錯誤;∵M(jìn)N=NH=BM+DN∴△CMN的周長=CM+CN+MN=CM+BM+CN+DN=CB+CD,∴△CMN的周長等于正方形ABCD的邊長的兩倍,②結(jié)論正確;∵△MAN≌△HAN,∴點A到MN的距離等于正方形ABCD的邊長AD,④結(jié)論正確;如圖1,將△ADF繞點A順時針性質(zhì)90°得到△ABH,連接HE.∵∠DAF+∠BAE=90°-∠EAF=45°,∠DAF=∠BAE,∴∠EAH=∠EAF=45°,∵EA=EA,AH=AD,∴△EAH≌△EAF,∴EF=HE,∵∠ABH=∠ADF=45°=∠ABD,∴∠HBE=90°,在Rt△BHE中,HE1=BH1+BE1,∵BH=DF,EF=HE,∵EF1=BE1+DF1,③結(jié)論正確;∵四邊形ABCD是正方形,∴∠ADC=90°,∠BDC=∠ADB=45°,∵∠MAN=45°,∴∠EAN=∠EDN,∴A、E、N、D四點共圓,∴∠ADN+∠AEN=180°,∴∠AEN=90°∴△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;⑤結(jié)論正確;∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,∴AM=AF,AN=AE,如圖3,過點M作MP⊥AN于P,在Rt△APM中,∠MAN=45°,∴MP=AMsin45°,∵S△AMN=AN?MP=AM?AN?sin45°,S△AEF=AE?AF?sin45°,∴S△AMN:S△AEF=1,∴S△AMN=1S△AEF,⑥正確;∵點A到MN的距離等于正方形ABCD的邊長,∴S正方形ABCD:S△AMN==1AB:MN,⑦結(jié)論正確.即:正確的有①②③④⑤⑥⑦,故答案為①②③④⑤⑥⑦.【題目點撥】此題是四邊形綜合題,主要考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),等腰直角三角形的判定和性質(zhì),解本題的關(guān)鍵是構(gòu)造全等三角形.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y=-2x+200(2)W=-2x2+280x-8000(3)售價為70元時,獲得最大利潤,這時最大利潤為1800元.【解題分析】

(1)用待定系數(shù)法求一次函數(shù)的表達(dá)式;(2)利用利潤的定義,求與之間的函數(shù)表達(dá)式;(3)利用二次函數(shù)的性質(zhì)求極值.【題目詳解】解:(1)設(shè),由題意,得,解得,∴所求函數(shù)表達(dá)式為.(2).(3),其中,∵,∴當(dāng)時,隨的增大而增大,當(dāng)時,隨的增大而減小,當(dāng)售價為70元時,獲得最大利潤,這時最大利潤為1800元.考點:二次函數(shù)的實際應(yīng)用.20、見解析【解題分析】試題分析:證明簡單的線段相等,可證線段所在的三角形全等,結(jié)合本題,證△ADB≌△AEB即可.試題解析:∵AB=AC,點D是BC的中點,∴AD⊥BC,∴∠ADB=90°.∵AE⊥EB,∴∠E=∠ADB=90°.∵AB平分∠DAE,∴∠BAD=∠BAE.在△ADB和△AEB中,∠E=∠ADB,∠BAD=∠BAE,AB=AB,∴△ADB≌△AEB(AAS),∴AD=AE.21、(1)①20;②當(dāng)弦AB的位置改變時,點P關(guān)于⊙O的“冪值”為定值,證明見解析;(2)點P關(guān)于⊙O的“冪值”為r2﹣d2;(3)﹣3≤b≤.【解題分析】【題目詳解】(1)①如圖1所示:連接OA、OB、OP.由等腰三角形的三線合一的性質(zhì)得到△PBO為直角三角形,然后依據(jù)勾股定理可求得PB的長,然后依據(jù)冪值的定義求解即可;②過點P作⊙O的弦A′B′⊥OP,連接AA′、BB′.先證明△APA′∽△B′PB,依據(jù)相似三角形的性質(zhì)得到PA?PB=PA′?PB′從而得出結(jié)論;(2)連接OP、過點P作AB⊥OP,交圓O與A、B兩點.由等腰三角形三線合一的性質(zhì)可知AP=PB,然后在Rt△APO中,依據(jù)勾股定理可知AP2=OA2-OP2,然后將d、r代入可得到問題的答案;(3)過點C作CP⊥AB,先求得OP的解析式,然后由直線AB和OP的解析式,得到點P的坐標(biāo),然后由題意圓的冪值為6,半徑為1可求得d的值,再結(jié)合兩點間的距離公式可得到關(guān)于b的方程,從而可求得b的極值,據(jù)此即可確定出b的取值范圍.【題目詳解】(1)①如圖1所示:連接OA、OB、OP,∵OA=OB,P為AB的中點,∴OP⊥AB,∵在△PBO中,由勾股定理得:PB==2,∴PA=PB=2,∴⊙O的“冪值”=2×2=20,故答案為:20;②當(dāng)弦AB的位置改變時,點P關(guān)于⊙O的“冪值”為定值,證明如下:如圖,AB為⊙O中過點P的任意一條弦,且不與OP垂直,過點P作⊙O的弦A′B′⊥OP,連接AA′、BB′,∵在⊙O中,∠AA′P=∠B′BP,∠APA′=∠BPB′,∴△APA′∽△B′PB,∴,∴PA?PB=PA′?PB′=20,∴當(dāng)弦AB的位置改變時,點P關(guān)于⊙O的“冪值”為定值;(2)如圖3所示;連接OP、過點P作AB⊥OP,交圓O與A、B兩點,∵AO=OB,PO⊥AB,∴AP=PB,∴點P關(guān)于⊙O的“冪值”=AP?PB=PA2,在Rt△APO中,AP2=OA2﹣OP2=r2﹣d2,∴關(guān)于⊙O的“冪值”=r2﹣d2,故答案為:點P關(guān)于⊙O的“冪值”為r2﹣d2;(3)如圖1所示:過點C作CP⊥AB,,∵CP⊥AB,AB的解析式為y=x+b,∴直線CP的解析式為y=﹣x+.聯(lián)立AB與CP,得,∴點P的坐標(biāo)為(﹣﹣b,+b),∵點P關(guān)于⊙C的“冪值”為6,∴r2﹣d2=6,∴d2=3,即(﹣﹣b)2+(+b)2=3,整理得:b2+2b﹣9=0,解得b=﹣3或b=,∴b的取值范圍是﹣3≤b≤,故答案為:﹣3≤b≤.【題目點撥】本題綜合性質(zhì)較強(qiáng),考查了新定義題,解答過程中涉及到了冪值的定義、勾股定理、等腰三角形的性質(zhì)、相似三角形的性質(zhì)和判定、一次函數(shù)的交點問題、兩點間的距離公式等,依據(jù)兩點間的距離公式列出關(guān)于b的方程,從而求得b的極值是解題的關(guān)鍵.22、(1)y1=4x,y2=-5x+1.(2)km.(3)h.【解題分析】

(1)由圖象直接寫出函數(shù)關(guān)系式;(2)若相遇,甲乙走的總路程之和等于兩地的距離.【題目詳解】(1)根據(jù)圖可以得到甲2.5小時,走1千米,則每小時走4千米,則函數(shù)關(guān)系是:y1=4x,乙班從B地出發(fā)勻速步行到A地,2小時走了1千米,則每小時走5千米,則函數(shù)關(guān)系式是:y2=?5x+1.(2)由圖象可知甲班速度為4km/h,乙班速度為5km/h,設(shè)甲、乙兩班學(xué)生出發(fā)后,x小時相遇,則4x+5x=1,解得x=.當(dāng)x=時,y2=?5×+1=,∴相遇時乙班離A地為km.(3)甲、乙兩班首次相距4千米,即兩班走的路程之和為6km,故4x+5x=6,解得x=h.∴甲、乙兩班首次相距4千米時所用時間是h.23、通信塔CD的高度約為15.9cm.【解題分析】

過點A作AE⊥CD于E,設(shè)CE=xm,解直角三角形求出AE,解直角三角形求出BM、DM,即可得出關(guān)于x的方程,求出方程的解即可.【題目詳解】過點A作AE⊥CD于E,則四邊形ABDE是矩形,設(shè)CE=xcm,在Rt△AEC中,∠AEC=90°,∠CAE=30°,所以AE=xcm,在Rt△CDM

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論