




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年山東省鄒平縣黃山中學(xué)高一數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.函數(shù)y=的單調(diào)遞減區(qū)間是()A.(-∞,1) B.[1,+∞)C.(-∞,-1) D.(-1,+∞)2.中國傳統(tǒng)文化中很多內(nèi)容體現(xiàn)了數(shù)學(xué)的“對稱美”.如圖所示的太極圖是由黑白兩個魚形紋組成的圓形圖案,充分體現(xiàn)了相互變化、對稱統(tǒng)一的形式美、和諧美.給出定義:能夠?qū)A(為坐標(biāo)原點)的周長和面積同時平分的函數(shù)稱為這個圓的“優(yōu)美函數(shù)”.給出下列命題:①對于任意一個圓,其“優(yōu)美函數(shù)”有無數(shù)個;②函數(shù)可以是某個圓的“優(yōu)美函數(shù)”;③正弦函數(shù)可以同時是無數(shù)個圓的“優(yōu)美函數(shù)”;④函數(shù)是“優(yōu)美函數(shù)”的充要條件為函數(shù)的圖象是中心對稱圖形A.①④ B.①③④C.②③ D.①③3.當(dāng)時,在同一平面直角坐標(biāo)系中,與的圖象是()A. B.C. D.4.若,則為()A. B.C. D.5.若,,,則()A. B.C. D.6.在中,,.若點滿足,則()A. B.C. D.7.已知角α的終邊過點P(4,-3),則sinα+cosα的值是()A. B.C. D.8.如圖,網(wǎng)格紙的各小格都是正方形(邊長為1),粗實線畫出的是一個凸多面體的三視圖(兩個矩形,一個直角三角形),則這個幾何體的表面積為()A. B.C. D.9.若m,n表示兩條不同直線,α表示平面,則下列命題中真命題是()A.若,,則 B.若,,則C.若,,則 D.若,,則10.若函數(shù)的值域為,則實數(shù)的取值范圍是()A. B.C. D.二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11.已知,則的值為________12.已知對于任意x,y均有,且時,,則是_____(填奇或偶)函數(shù)13.已知,則的值為___________.14.如圖,已知△和△有一條邊在同一條直線上,,,,在邊上有個不同的點F,G,則的值為______15.兩條直線與互相垂直,則______三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16.已知集合A={x|﹣2≤x≤5},B={x|m﹣6≤x≤2m﹣1}(1)當(dāng)m=﹣1時,求A∩B;(2)若集合B是集合A的子集,求實數(shù)m的取值范圍17.已知,,(1)用,表示;(2)求18.設(shè)是函數(shù)定義域內(nèi)的一個子集,若存在,使得成立,則稱是的一個“弱不動點”,也稱在區(qū)間上存在“弱不動點”.設(shè)函數(shù),(1)若,求函數(shù)的“弱不動點”;(2)若函數(shù)在上不存在“弱不動點”,求實數(shù)的取值范圍19.已知函數(shù).(1)若不等式的解集為,求不等式的解集;(2)若,求不等式的解集.20.已知,其中為奇函數(shù),為偶函數(shù).(1)求與的解析式;(2)判斷函數(shù)在其定義域上的單調(diào)性(不需證明);(3)若不等式恒成立,求實數(shù)的取值范圍.21.已知函數(shù).(1)證明為奇函數(shù);(2)若在上為單調(diào)函數(shù),當(dāng)時,關(guān)于的方程:在區(qū)間上有唯一實數(shù)解,求的取值范圍.
參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、A【解析】令t=-x2+2x﹣1,則y,故本題即求函數(shù)t的增區(qū)間,再結(jié)合二次函數(shù)的性質(zhì)可得函數(shù)t的增區(qū)間【詳解】令t=-x2+2x﹣1,則y,故本題即求函數(shù)t的增區(qū)間,由二次函數(shù)的性質(zhì)可得函數(shù)t的增區(qū)間為(-∞,1),所以函數(shù)的單調(diào)遞減區(qū)間為(-∞,1).故答案為A【點睛】本題主要考查指數(shù)函數(shù)和二次函數(shù)的單調(diào)性,考查復(fù)合函數(shù)的單調(diào)性,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.2、D【解析】根據(jù)定義分析,優(yōu)美函數(shù)具備的特征是,函數(shù)關(guān)于圓心(即坐標(biāo)原點)呈中心對稱.【詳解】對①,中心對稱圖形有無數(shù)個,①正確對②,函數(shù)是偶函數(shù),不關(guān)于原點成中心對稱.②錯誤對③,正弦函數(shù)關(guān)于原點成中心對稱圖形,③正確.對④,充要條件應(yīng)該是關(guān)于原點成中心對稱圖形,④錯誤故選D【點睛】仔細(xì)閱讀新定義問題,理解定義中優(yōu)美函數(shù)的含義,找到中心對稱圖形,即可判斷各項正誤.3、B【解析】由定義域和,使用排除法可得.【詳解】的定義域為,故AD錯誤;BC中,又因為,所以,故C錯誤,B正確.故選:B4、A【解析】根據(jù)對數(shù)換底公式,結(jié)合指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性直接判斷.【詳解】由對數(shù)函數(shù)的單調(diào)性可知,即,且,,且,又,即,所以,又根據(jù)指數(shù)函數(shù)的單調(diào)性可得,所以,故選:A.5、A【解析】先變形,然后利用指數(shù)函數(shù)的性質(zhì)比較大小即可【詳解】,因為在上為減函數(shù),且,所以,所以,故選:A6、A【解析】,故選A7、A【解析】由三角函數(shù)的定義可求得sinα與cosα,從而可得sinα+cosα的值【詳解】∵知角α的終邊經(jīng)過點P(4,-3),∴sinα,cosα,∴sinα+cosα故選:A8、B【解析】根據(jù)三視圖的法則:長對正,高平齊,寬相等;可得幾何體如右圖所示,這是一個三棱柱.表面積為:故答案為B.9、A【解析】對于A,因為垂直于同一平面的兩條直線相互平行,故A正確;對于B,如果一條直線平行于一個平面,那么平行于已知直線的直線與該平面的位置關(guān)系有平行或在平面內(nèi),故B錯;對于C,因同平行于一個平面的兩條直線異面、相交或平行,故C錯;對于D,與一個平面的平行直線垂直的直線與已知平面是平行、相交或在面內(nèi),故D錯,選A.10、C【解析】因為函數(shù)的值域為,所以可以取到所有非負(fù)數(shù),即的最小值非正.【詳解】因為,且的值域為,所以,解得.故選:C.二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11、【解析】∵,∴,解得答案:12、奇函數(shù)【解析】賦值,可求得,再賦值即可得到,利用奇偶性的定義可判斷奇偶性;【詳解】,令,得,,再令,得,是上的奇函數(shù);【點睛】本題考查了賦值法及奇函數(shù)的定義13、##【解析】根據(jù)給定條件結(jié)合二倍角的正切公式計算作答.【詳解】因,則,所以的值為.故答案為:14、16【解析】由題意易知:△和△為全等的等腰直角三角形,斜邊長為,,故答案為16點睛:平面向量數(shù)量積類型及求法(1)求平面向量數(shù)量積有三種方法:一是夾角公式a·b=|a||b|cosθ;二是坐標(biāo)公式a·b=x1x2+y1y2;三是利用數(shù)量積的幾何意義.本題就是利用幾何意義處理的.(2)求較復(fù)雜的平面向量數(shù)量積的運算時,可先利用平面向量數(shù)量積的運算律或相關(guān)公式進(jìn)行化簡.15、【解析】先分別求出兩條直線的斜率,再利用兩條直線垂直的充要條件是斜率乘積等于,即可求出結(jié)果【詳解】直線的斜率,直線的斜率,且兩直線與互相垂直,,,解得,故答案為【點睛】本題主要考查兩直線垂直的充要條件,屬于基礎(chǔ)題.在兩條直線的斜率都存在的條件下,兩條直線垂直的充要條件是斜率乘積等于三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16、(1)A∩B=?;(2)(﹣∞,﹣5)【解析】(1)由m=﹣1求得B,再利用交集運算求解.(2)根據(jù)B?A,分B=?和B≠?兩種求解討論求解.【詳解】(1)m=﹣1時,B={x|﹣7≤x≤﹣3};∴A∩B=?;(2)∵B?A;∴①B=?時,m﹣6>2m﹣1;∴m<﹣5;②B≠?時,,此不等式組無解;∴m的取值范圍是(﹣∞,﹣5)【點睛】本題主要考查集合的基本運算以及集合基本關(guān)系的應(yīng)用,還考查了分類討論的思想,屬于基礎(chǔ)題.17、(1)(2)【解析】先把指數(shù)式化為對數(shù)式求出的值,再利用對數(shù)的運算性質(zhì)進(jìn)行求解【小問1詳解】解:,,,【小問2詳解】解:,,,18、(1)0(2)【解析】(1)解方程可得;(2)由方程在上無解,轉(zhuǎn)化為求函數(shù)的取值范圍,利用換元法求解取值范圍,同時注意對數(shù)的真數(shù)大于0對參數(shù)范圍有限制,從而可得結(jié)論【小問1詳解】當(dāng)時,,由題意得,即,即,得,即,所以函數(shù)的“弱不動點”為0【小問2詳解】由已知在上無解,即在上無解,令,得在上無解,即在上無解記,則在上單調(diào)遞減,故,所以,或又在上恒成立,故在上恒成立,即在上恒成立,記,則在上單調(diào)遞減,故,所以,綜上,實數(shù)的取值范圍是19、(1)或(2)答案見解析【解析】(1)由已知得,4是方程的兩根,根據(jù)一元二次方程的根與系數(shù)的關(guān)系求得m,n,代入不等式,求解可得答案;(2)代入已知條件得,分,,,,,分別求解不等式可得答案.【小問1詳解】解:依題意,的解集為,故,4是方程的兩根,則,解得,故或,故不等式的解集為或.【小問2詳解】解:依題意,,若,(*)式化為,解得;若,則;當(dāng)時,的解為或;當(dāng)時,(*)式化為,該不等式無解;當(dāng)時,的解為;當(dāng)時,的解為;綜上所述,若,不等式的解集為;若,不等式的解集為或;若,不等式無解;若,不等式的解集為;若,不等式的解集為.20、(1),;(2)函數(shù)在其定義域上為減函數(shù);(3).【解析】(1)由與可建立有關(guān)、的方程組,可得解出與的解析式;(2)化簡函數(shù)解析式,根據(jù)函數(shù)的解析式可直接判斷函數(shù)的單調(diào)性;(3)將所求不等式變形為,根據(jù)函數(shù)的定義域、單調(diào)性可得出關(guān)于實數(shù)的不等式組,由此可解得實數(shù)的取值范圍.【詳解】(1)由于函數(shù)為奇函數(shù),為偶函數(shù),,,即,所以,,解得,.由,可得,所以,,;(2)函數(shù)的定義域為,,所以,函數(shù)在其定義域上為減函數(shù);(3)由于函數(shù)為定義域上的奇函數(shù),且為減函數(shù),由,可得,由題意可得,解得.因此,實數(shù)的取值范圍是.【點睛】思路點睛:根據(jù)函數(shù)單調(diào)性求解函數(shù)不等式的思路如下:(1)先分析出函數(shù)在指定區(qū)間上的單調(diào)性;(2)根據(jù)函數(shù)單調(diào)性將函數(shù)值的關(guān)系轉(zhuǎn)變?yōu)樽宰兞恐g的關(guān)系,并注意定義域;(3)求解關(guān)于自變量的不等式,從而求解出不等式的解集.21、(1)證明見解析(2)【解析】(1)先求函數(shù)的定義域,再根據(jù)的關(guān)系可證明奇偶性;(2)根據(jù)單調(diào)性及奇函數(shù)性質(zhì),有,再通過換元,轉(zhuǎn)化為二次函數(shù),通
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 股權(quán)轉(zhuǎn)讓協(xié)議(海景酒店)
- 2025廣東職工勞務(wù)合同
- 商品房認(rèn)購合同
- 2025年門面租賃合同模板
- 護(hù)士辭職申請協(xié)議書
- 個人提成協(xié)議書范本
- 大慶醫(yī)學(xué)高等專科學(xué)?!秾I(yè)導(dǎo)學(xué)(物流管理)》2023-2024學(xué)年第一學(xué)期期末試卷
- 河南省鄭州市登封市重點中學(xué)2025年初三第二次(4月)調(diào)研考試化學(xué)試題試卷含解析
- 河南林業(yè)職業(yè)學(xué)院《結(jié)構(gòu)力學(xué)2》2023-2024學(xué)年第二學(xué)期期末試卷
- 四川文理學(xué)院《生物制藥工程原理和技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 征地拆遷培訓(xùn)班課件
- 2024年江蘇城鄉(xiāng)建設(shè)職業(yè)學(xué)院高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
- 工作進(jìn)度保證措施
- 管道(管網(wǎng))水力計算表
- 游泳對提高免疫力的方法
- 起重機(jī)械安全技術(shù)規(guī)程(TSG-51-2023)宣貫解讀課件
- 汞中毒學(xué)習(xí)課件
- 國際商事調(diào)解的流程和程序
- 工廠領(lǐng)手套管理制度
- JGJT220-2010 抹灰砂漿技術(shù)規(guī)程
- 【基于PLC的搬運機(jī)器人系統(tǒng)設(shè)計4700字(論文)】
評論
0/150
提交評論