考點(diǎn)23 反比例函數(shù)實(shí)際問題的6大題型歸類-解析版_第1頁
考點(diǎn)23 反比例函數(shù)實(shí)際問題的6大題型歸類-解析版_第2頁
考點(diǎn)23 反比例函數(shù)實(shí)際問題的6大題型歸類-解析版_第3頁
考點(diǎn)23 反比例函數(shù)實(shí)際問題的6大題型歸類-解析版_第4頁
考點(diǎn)23 反比例函數(shù)實(shí)際問題的6大題型歸類-解析版_第5頁
已閱讀5頁,還剩43頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

考點(diǎn)23反比例函數(shù)實(shí)際問題的6大題型歸類1幾何類反比例函數(shù)與實(shí)際問題的綜合,掌握待定系數(shù)法求二次函數(shù)解析式,反比例函數(shù)解析式,理解題目中各點(diǎn)坐標(biāo)的計(jì)算方法,函數(shù)之間相交的交點(diǎn)的計(jì)算方法。2表格類解題的關(guān)鍵是正確地從中整理出函數(shù)模型,并利用函數(shù)的知識(shí)解決實(shí)際問題.3圖形類反比例函數(shù)的應(yīng)用,現(xiàn)實(shí)生活中存在大量成反比例函數(shù)的兩個(gè)變量,解答該類問題的關(guān)鍵是確定兩個(gè)變量之間的函數(shù)關(guān)系,然后利用待定系數(shù)法求出它們的關(guān)系式.4探究類反比例函數(shù)的圖像和性質(zhì),利用圖像解決問題,從圖上獲取有用的信息,是解題的關(guān)鍵所在.還能利用圖像直接比較函數(shù)值或是自變量的大?。畬?shù)形結(jié)合在一起,是分析解決函數(shù)問題的一種常用方法.5利潤類反比例函數(shù)的利潤問題,往往和二次函數(shù)或者一次函數(shù)結(jié)合,單價(jià)、總價(jià)、數(shù)量的關(guān)系,以及函數(shù)解析式的求法,要熟練掌握;同時(shí),一次函數(shù)解析式,分段函數(shù)、二次函數(shù)的性質(zhì),反比例函數(shù)的性質(zhì)等知識(shí),綜合性較強(qiáng),熟練掌握各函數(shù)性質(zhì)是解題關(guān)鍵;表格類問題的利潤一般合理從表格中獲取關(guān)鍵信息列式是解題的關(guān)鍵.6新定義問題弄懂新定義的概念和性質(zhì)是關(guān)鍵??键c(diǎn)1幾何類考點(diǎn)2表格類考點(diǎn)3圖形類考點(diǎn)4探究類考點(diǎn)5利潤類考點(diǎn)6新定義問題考點(diǎn)1幾何類1.(2022秋·安徽合肥·九年級(jí)合肥市第四十五中學(xué)??茧A段練習(xí))已知學(xué)生注意力指標(biāo)y隨時(shí)間x(分鐘)變化的函數(shù)圖象如下圖所示,當(dāng)和時(shí),函數(shù)圖象是線段;當(dāng)時(shí),圖象是反比例函數(shù)的一部分,BC∥AD∥x軸.(1)求點(diǎn)D坐標(biāo);(2)當(dāng)x滿足什么條件時(shí),學(xué)生注意力指標(biāo)不低于30.【答案】(1)(45,20)(2)當(dāng)4≤x≤30時(shí),學(xué)生注意力指標(biāo)不低于30.【分析】(1)求出反比例函數(shù)解析式,即可求解;(2)先求出直線AB的解析式,可得y≥30時(shí),x的取值范圍,再由反比例函數(shù)可得y≥30時(shí),x的取值范圍,即可求解.【詳解】(1)解:設(shè)當(dāng)時(shí),反比例函數(shù)解析式為,把點(diǎn)C(20,45)代入得:,解得:k=900,∴反比例函數(shù)解析式為,∴當(dāng)x=45時(shí),,∴D(45,20);(2)解:根據(jù)題意得:A(0,20),設(shè)當(dāng)0≤x<10時(shí),AB的解析式為y=mx+n,將A(0,20)、B(10,45)代入得:,解得:,∴直線AB的解析式為,當(dāng)y≥30時(shí),,解得:x≥4,由(1)得反比例函數(shù)解析式為,當(dāng)y≥30時(shí),,解得:x≤30,∴當(dāng)4≤x≤30時(shí),學(xué)生注意力指標(biāo)不低于30.【點(diǎn)睛】本題考查函數(shù)圖象的應(yīng)用,涉及一次函數(shù)、反比例函數(shù)及不等式等知識(shí),解題的關(guān)鍵是求出一次函數(shù)和反比例函數(shù)的解析式.2.(2022秋·安徽蕪湖·九年級(jí)統(tǒng)考期中)密閉容器內(nèi)有一定質(zhì)量的二氧化碳,當(dāng)容器的體積V(單位:)變化時(shí),氣體的密度(單位:)隨之變化.已知密度與體積V是反比例函數(shù)關(guān)系,它的圖象如圖所示,當(dāng)時(shí),.(1)求密度關(guān)于體積V的函數(shù)解析式;(2)若,求二氧化碳密度的變化范圍.【答案】(1)(2)【分析】(1)用待定系數(shù)法即可完成;(2)把V=3和V=9代入(1)所求得的解析式中,即可求得密度的變化范圍.【詳解】(1)解:∵密度與體積V是反比例函數(shù)關(guān)系,∴設(shè),∵當(dāng)時(shí),,∴,∴,∴密度關(guān)于體積V的函數(shù)解析式為:;(2)解:觀察函數(shù)圖象可知,隨V的增大而減小,當(dāng)時(shí),,當(dāng)時(shí),,∴當(dāng)時(shí),即二氧化碳密度的變化范圍是.【點(diǎn)睛】本題考查反比例函數(shù)的實(shí)際應(yīng)用,掌握反比例函數(shù)圖象的性質(zhì)是解題的關(guān)鍵.3.(2021秋·安徽合肥·九年級(jí)??计谥校榱俗龊眯鹿诜窝滓咔槠陂g開學(xué)工作,我區(qū)某中學(xué)用藥熏消毒法對(duì)教室進(jìn)行消毒.已知一瓶藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量y(毫克)與時(shí)間x(分鐘)成正比例;藥物釋放完畢后,y與x成反比例,如圖所示.根據(jù)圖中提供的信息,解答下列問題:(1)寫出傾倒一瓶藥物后,從藥物釋放開始,y與x之間的兩個(gè)函數(shù)關(guān)系式及相應(yīng)的自變量取值范圍;(2)據(jù)測(cè)定,當(dāng)空氣中每立方米的含藥量不低于8毫克時(shí),消毒有效,那么傾倒一瓶藥物后,從藥物釋放開始,有效消毒時(shí)間是多少分鐘?【答案】(1);(2)31.5分鐘【分析】(1)首先根據(jù)題意,已知藥物釋放過程中,y與x的函數(shù)關(guān)系式為;藥物釋放完畢后,y與x的函數(shù)關(guān)系式為(,k為常數(shù)),將數(shù)據(jù)代入用待定系數(shù)法可得y與x的函數(shù)關(guān)系式;(2)將y=8分別代入兩個(gè)函數(shù)解析式,求出x的值,進(jìn)一步求解可得答案.【詳解】(1)當(dāng)0≤x≤15時(shí),設(shè)y=ax(a≠0);當(dāng)x>15時(shí),設(shè)y=(k≠0).將(15,20)代入y=ax,20=15a,解得:a=,∴y=x(0≤x≤15).將(15,20)代入y=,20=,解得:k=300,∴y=(x>15),∴;(2)把y=8代入y=x得,x=6;把y=8代入y=得,x=37.5,37.5-6=31.5(分鐘).答:有效消毒時(shí)間是31.5分鐘.【點(diǎn)睛】本題考查了反比例函數(shù)的應(yīng)用,待定系數(shù)法求函數(shù)解析式,注意分段函數(shù)后面要帶上相應(yīng)的自變量范圍,正確理解題意,熟練掌握待定系數(shù)法是解決本題的關(guān)鍵.4.(2019秋·安徽安慶·九年級(jí)階段練習(xí))一般情況下,中學(xué)生完成數(shù)學(xué)家庭作業(yè)時(shí),注意力指數(shù)隨時(shí)間x(分鐘)的變化規(guī)律如圖所示(其中AB、BC為線段,CD為雙曲線的一部分).(1)分別求出線段AB和雙曲線CD的函數(shù)關(guān)系式;(2)若學(xué)生的注意力指數(shù)不低于40為高效時(shí)間,根據(jù)圖中信息,求出一般情況下,完成一份數(shù)學(xué)家庭作業(yè)的高效時(shí)間是多少分鐘?【答案】(1)AB:;CD:;(2)有效時(shí)間為50分鐘.【詳解】分析:(1)、利用待定系數(shù)法分別求出函數(shù)解析式;(2)、將y=40分別代入兩個(gè)函數(shù)解析式分別求出x的值,然后進(jìn)行做差得出答案.詳解:(1)設(shè)線段AB所在的直線的解析式為y1=k1x+30,把B(10,50)代入得,k1=2,∴AB解析式為:y1=2x+30(0≤x≤10).設(shè)C、D所在雙曲線的解析式為y2=,把C(44,50)代入得,k2=2200,∴曲線CD的解析式為:y2=(x≥44);(2)將y=40代入y1=2x+30得:2x+30=40,解得:x=5,將y=40代入y2=得:x=55.

55﹣5=50.所以完成一份數(shù)學(xué)家庭作業(yè)的高效時(shí)間是50分鐘.點(diǎn)睛:本題主要考查的就是函數(shù)圖像的基本應(yīng)用問題,屬于基礎(chǔ)題型.求函數(shù)解析式的時(shí)候我們用的就是待定系數(shù)法,在設(shè)函數(shù)關(guān)系式的時(shí)候一定要正確.5.(2022秋·安徽安慶·九年級(jí)安慶市第四中學(xué)??茧A段練習(xí))某項(xiàng)研究表明:人的眼睛疲勞系數(shù)與睡眠時(shí)間之間成函數(shù)關(guān)系,它們之間的關(guān)系如圖所示.其中,當(dāng)睡眠時(shí)間不超過4小時(shí)()時(shí),眼睛疲勞系數(shù)是睡眠時(shí)間的反比例函數(shù);當(dāng)睡眠時(shí)間不少于4小時(shí)()時(shí),眼睛疲勞系數(shù)是睡眠時(shí)間的一次函數(shù),且當(dāng)睡眠時(shí)間達(dá)到6小時(shí)后,眼睛疲勞系數(shù)為0.根據(jù)圖像,回答下列問題:(1)當(dāng)時(shí),求眼睛疲勞系數(shù)關(guān)于睡眠時(shí)間之間的函數(shù)關(guān)系式;(2)如果某人睡眠了小時(shí)后,再連續(xù)睡眠了3小時(shí),此時(shí)他的眼睛疲勞系數(shù)恰好減少了3,求的值.【答案】(1)(2)【分析】(1)根據(jù)圖像經(jīng)過點(diǎn),利用待定系數(shù)法求出反比例函數(shù)解析式;(2)當(dāng),根據(jù)圖像經(jīng)過的兩點(diǎn)利用待定系數(shù)法確定函數(shù)的解析式,依題意列出方程即可求解.【詳解】(1)解:當(dāng)睡眠時(shí)間少于4小時(shí)()時(shí),眼睛疲勞系數(shù)是睡眠時(shí)間的反比例函數(shù).設(shè)這個(gè)反比例函數(shù)表達(dá)式為,因?yàn)閳D像經(jīng)過點(diǎn),所以.解得.所以眼眼疲勞系數(shù)與睡眠時(shí)間之間的函數(shù)表達(dá)式為.(2)當(dāng)時(shí),設(shè)眼睛疲勞系數(shù)與睡眠時(shí)間之間的函數(shù)表達(dá)方式為,因?yàn)閳D像經(jīng)過點(diǎn)和,所以解得,所以眼睛疲勞系數(shù)與睡眠時(shí)間之間的函數(shù)表達(dá)式是.某人睡眠了小時(shí)后,再連續(xù)睡眠了3小時(shí),,,依題意:,解得:或(舍去).∴.【點(diǎn)睛】本題考查了一次函數(shù)和反比例函數(shù)的綜合應(yīng)用,解題的關(guān)鍵是仔細(xì)讀題,求出函數(shù)解析式.考點(diǎn)2表格類6.(2023·安徽·校聯(lián)考一模)如圖,將一長方體A放置于一水平玻璃桌面上,按不同的方式擺放,記錄桌面所受壓強(qiáng)與受力面積的關(guān)系如下表所示(與長方體A相同重量的長方體均滿足此關(guān)系).桌面所受壓強(qiáng)100200400800受力面積210.50.25(1)根據(jù)以上數(shù)據(jù),求桌面所受壓強(qiáng)與受力面積之間的函數(shù)表達(dá)式;(2)現(xiàn)想將另一長、寬、高分別為0.2m,0.1m,0.3m,且與長方體相同重量的長方體按如右圖所示的方式放置于該水平玻璃桌面上.若該玻璃桌面能承受的最大壓強(qiáng)為5000Pa,請(qǐng)你判斷這種擺放方式是否安全?并說明理由.【答案】(1)(2)不安全,理由見解析【分析】(1)用待定系數(shù)法可得函數(shù)關(guān)系式即可;(2)算出S,即可求出P,比較可得答案.【詳解】(1)解:由表格可知,壓強(qiáng)P與受力面積S的乘積不變,故壓強(qiáng)P是受力面積S的反比例函數(shù),設(shè),將代入得:,∴;(2)這種擺放方式不安全,理由如下:由圖可知,∴將長方體放置于該水平玻璃桌面上,,∵,∴這種擺放方式不安全.【點(diǎn)睛】本題考查反比例函數(shù)的應(yīng)用,解題的關(guān)鍵是讀懂題意,能列出函數(shù)關(guān)系式.7.(2022秋·安徽宿州·九年級(jí)統(tǒng)考期末)已知某品牌運(yùn)動(dòng)鞋每雙進(jìn)價(jià)120元,為求合適的銷售價(jià)格進(jìn)行了4天的試銷,試銷情況如下表:第1天第2天第3天第4天售價(jià)x(元/雙)150200250300銷售量y(雙)40302420(1)表中數(shù)據(jù)x、y滿足什么函數(shù)關(guān)系式?請(qǐng)求出這個(gè)函數(shù)關(guān)系式;(2)若每天銷售利潤為3000元,則單價(jià)應(yīng)定為多少元?【答案】(1)y=;(2)若商場(chǎng)計(jì)劃每天的銷售利潤為3000元,則其單價(jià)應(yīng)定為240元.【分析】(1)根據(jù)表中的數(shù)據(jù)可以判斷x與y的函數(shù)關(guān)系,本題即可解決;(2)根據(jù)題意列出方程進(jìn)行求解即可得到答案.【詳解】解:(1)由表中數(shù)據(jù)得:xy=6000,∴y=,∴y是x的反比例函數(shù),y與x之間的函數(shù)關(guān)系式為y=;(2)由題意得,(x﹣120)?=3000,∴解得,x=240;經(jīng)檢驗(yàn),x=240是原方程的根,∴單價(jià)應(yīng)定為240元.答:若商場(chǎng)計(jì)劃每天的銷售利潤為3000元,則其單價(jià)應(yīng)定為240元.【點(diǎn)睛】本題主要考查了反比例函數(shù)的應(yīng)用,解題的關(guān)鍵在于能夠準(zhǔn)確找到等量關(guān)系列出方程求解.8.(2020秋·安徽亳州·九年級(jí)??茧A段練習(xí))某醫(yī)藥研究所研發(fā)了一種新藥,試驗(yàn)藥效時(shí)發(fā)現(xiàn):1.5小時(shí)內(nèi),血液中含藥量y(微克)與時(shí)間x(小時(shí))的關(guān)系可近似地用二次函數(shù)y=ax2+bx表示;1.5小時(shí)后(包括1.5小時(shí)),y與x可近似地用反比例函數(shù)y=(k>0)表示,部分實(shí)驗(yàn)數(shù)據(jù)如表:時(shí)間x(小時(shí))0.211.8…含藥量y(微克)7.22012.5…(1)求a、b及k的值;(2)服藥后幾小時(shí)血液中的含藥量達(dá)到最大值?最大值為多少?(3)如果每毫升血液中含藥量不少于10微克時(shí)治療疾病有效,那么成人按規(guī)定劑量服用該藥一次后能維持多長的有效時(shí)間.(≈1.41,精確到0.1小時(shí))【答案】(1)a=﹣20,b=40,k=22.5;(2)服藥后1小時(shí)血液中的含藥量達(dá)到最大值,最大值為20微克;(3)成人按規(guī)定劑量服用該藥一次后能維持2.0小時(shí)的有效時(shí)間.【分析】(1)根據(jù)表格信息代入數(shù)值列方程組求解即可;(2)由(1)得到y(tǒng)=﹣20x2+40x,化為頂點(diǎn)式即可得到結(jié)果;(3)令y=10求出x的值就是所求的結(jié)果;【詳解】(1)設(shè)1.5小時(shí)內(nèi),血液中含藥量y(微克)與時(shí)間x(小時(shí))的關(guān)系為y=ax2+bx,根據(jù)表格得:,解得:a=﹣20,b=40,1.5小時(shí)后(包括1.5小時(shí)),y與x可近似地用反比例函數(shù)y=(k>0),根據(jù)表格得:k=1.8×12.5=22.5,∴a=﹣20,b=40,k=22.5;(2)由(1)知y=﹣20x2+40x,∴y=﹣20(x﹣1)2+20,∴服藥后1小時(shí)血液中的含藥量達(dá)到最大值,最大值為20微克;(3)當(dāng)y=10時(shí),10=﹣20x2+40x,或10=,解得:x=1﹣或x=1+(x>1.5,不合題意舍去),x=2.25,∴成人按規(guī)定劑量服用該藥一次后能維持2.25﹣(1﹣)≈2.0小時(shí)的有效時(shí)間.【點(diǎn)睛】本題主要考查了二次函數(shù)的應(yīng)用,準(zhǔn)確求解二次函數(shù)的解析式及一般式與頂點(diǎn)式的互化是解題的關(guān)鍵.9.(2019秋·安徽·九年級(jí)校聯(lián)考階段練習(xí))小明到眼鏡店調(diào)查了近視眼鏡鏡片的度數(shù)和鏡片焦距的關(guān)系,發(fā)現(xiàn)鏡片的度數(shù)(度)是鏡片焦距(厘米)()的反比例函數(shù),調(diào)查數(shù)據(jù)如下表:眼鏡片度數(shù)(度)…鏡片焦距(厘米)…(1)求與的函數(shù)表達(dá)式;(2)若小明所戴近視眼鏡鏡片的度數(shù)為度,求該鏡片的焦距.【答案】(1),;(2)該鏡片的焦距為.【分析】(1)根據(jù)圖表可以得到眼鏡片的度數(shù)與焦距的積是一個(gè)常數(shù),因而眼鏡片度數(shù)與鏡片焦距成反比例函數(shù)關(guān)系,即可求解;(2)在解析式中,令y=500,求出x的值即可.【詳解】(1)根據(jù)題意,設(shè)與的函數(shù)表達(dá)式為把,代入中,得∴與的函數(shù)表達(dá)式為.(2)當(dāng)時(shí),答:該鏡片的焦距為.【點(diǎn)睛】考查了反比例函數(shù)的應(yīng)用,正確理解反比例函數(shù)的特點(diǎn),兩個(gè)變量的乘積是常數(shù),是解決本題的關(guān)鍵.10.(2020·安徽·九年級(jí)專題練習(xí))某公司銷售一種進(jìn)價(jià)為20元/個(gè)的計(jì)算器,銷售過程中的其他開支(不含進(jìn)價(jià))總計(jì)40萬元,其銷售量y(萬個(gè))與銷售價(jià)格x(元/個(gè))的變化如下表銷售價(jià)格x(元/個(gè))銷售量y(萬個(gè))30≤x≤60x+860<x≤80(1)求出當(dāng)銷售量為2.5萬個(gè)時(shí),銷售價(jià)格為多少?(2)求出該公司銷售這種計(jì)算器的凈得利潤w(萬元)與銷售價(jià)格x(元個(gè))的函數(shù)關(guān)系式;(3)銷售價(jià)格定為多少元時(shí),該公司獲得的利潤最大?最大利潤是多少?【答案】(1)當(dāng)銷售量等于2.5萬個(gè)時(shí),銷售價(jià)格等于55元/個(gè);(2)當(dāng)30≤x≤60時(shí),w=﹣0.1x2+10x﹣200;當(dāng)60<x≤80時(shí),w=80;(3)銷售價(jià)格定為50或80元/件時(shí),獲得的利潤最大,最大利潤是50萬元.【分析】(1)根據(jù)銷售量的代數(shù)式等于2.5,求出符合題意的解;(2)根據(jù)x的范圍分類討論,由“總利潤=單件利潤×銷售量”可得函數(shù)解析式;(3)結(jié)合(1)中兩個(gè)函數(shù)解析式,分別依據(jù)二次函數(shù)的性質(zhì)和反比例函數(shù)的性質(zhì)求其最值即可.【詳解】解:(1)由題意得,x+8=2.5,解得,x=55,答:當(dāng)銷售量等于2.5萬個(gè)時(shí),銷售價(jià)格等于55元/個(gè);(2)當(dāng)30≤x≤60時(shí),w=(x﹣20)(﹣0.1x+8)﹣40=﹣0.1x2+10x﹣200;當(dāng)60<x≤80時(shí),w=(x﹣20)?4080;(3)當(dāng)30≤x≤60時(shí),w=﹣0.1x2+10x﹣200=﹣0.1(x﹣50)2+50,∴當(dāng)x=50時(shí),w取得最大值50(萬元);當(dāng)60<x≤80時(shí),w80,∵﹣2400<0,∴w隨x的增大而增大,當(dāng)x=80時(shí),w最大=50萬元,∴銷售價(jià)格定為50或80元/件時(shí),獲得的利潤最大,最大利潤是50萬元.【點(diǎn)睛】本題主要考查二次函數(shù)和反比例函數(shù)的應(yīng)用,理解題意依據(jù)相等關(guān)系列出函數(shù)解析式,并熟練掌握二次函數(shù)和反比例函數(shù)的性質(zhì)是解題的關(guān)鍵.考點(diǎn)3圖形類11.(2023春·安徽淮南·九年級(jí)校聯(lián)考階段練習(xí))某校園藝社計(jì)劃利用已有的一堵長為的墻,用籬笆圍一個(gè)面積為的矩形園子.(1)如圖,設(shè)矩形園子的相鄰兩邊長分別為、.①求y關(guān)于x的函數(shù)表達(dá)式;②當(dāng)時(shí),求x的取值范圍;(2)洋洋說籬笆的長可以為.你認(rèn)為洋洋的說法對(duì)嗎?若對(duì),請(qǐng)求出矩形園子的長與寬;若不對(duì),請(qǐng)說明理由.【答案】(1)①,②當(dāng)時(shí),(2)洋洋的說法對(duì),矩形園子的長為,寬為,理由見解析【分析】(1)①利用矩形的面積計(jì)算公式,找出y關(guān)于x的函數(shù)表達(dá)式,結(jié)合墻長為10m,即可得出x的取值范圍;②代入y≥4,可求出x≤3,結(jié)合x≥,即可求出x的取值范圍;(2)洋洋的說法對(duì),設(shè)垂直于墻的一邊長為am,則平行于墻的一邊長為(14-2a)m,根據(jù)矩形園子的面積為12m2,即可得出關(guān)于a的一元二次方程,解之即可得出a的值,再結(jié)合墻長10m,即可得出:洋洋的說法對(duì),此時(shí)矩形園子的長為6m,寬為2m.【詳解】(1)解:①∵圍成矩形園子的面積為12m2,∴xy=12,∴y=.又∵0<y≤10,∴x≥,∴y關(guān)于x的函數(shù)表達(dá)式為y=(x≥).②∵y≥4,即≥4,∴x≤3.又∵x≥,∴≤x≤3.(2)解:洋洋的說法對(duì),理由如下:設(shè)垂直于墻的一邊長為am,則平行于墻的一邊長為(14-2a)m,依題意得:a(14-2a)=12,整理得:a2-7a+6=0,解得:a1=1,a2=6,當(dāng)a=1時(shí),14-2a=14-2×1=12>10,不合題意,舍去;當(dāng)a=6時(shí),14-2a=14-2×6=2<10,符合題意.∴洋洋的說法對(duì),此時(shí)矩形園子的長為6m,寬為2m.【點(diǎn)睛】本題考查了一元二次方程的應(yīng)用以及反比例函數(shù)的應(yīng)用,解題的關(guān)鍵是:(1)①根據(jù)各數(shù)量之間的關(guān)系,找出y關(guān)于x的函數(shù)表達(dá)式;②利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,找出x的取值范圍;(2)找準(zhǔn)等量關(guān)系,正確列出一元二次方程.12.(2022秋·安徽滁州·九年級(jí)校考階段練習(xí))如圖,李老師準(zhǔn)備用籬笆圍建一個(gè)面積為60m2的矩形花圃ABCD,其中一邊AB靠墻.(1)設(shè)AD的長為x米,DC的長為y米,求y與x之間的函數(shù)關(guān)系式;(2)當(dāng)矩形花圃ABCD的相鄰兩邊之比是0.6時(shí)(接近黃金分割),花圃最美觀.若圍成矩形花圃ABCD的三邊籬笆總長不超過24m,且為了美觀,求此時(shí)籬笆AD的長.【答案】(1);(2)6米【分析】(1)根據(jù)長方形面積公式列出面積等式,再變形即可;(2)根據(jù)相鄰兩邊之比是0.6分類考慮,列出方程與不等式組,根據(jù)不等式取舍即可【詳解】解:(1)由題意得,S矩形ABCD=AD×DC=xy,∴;(2)由題意得,,解得:,∴AD=6米;或,解得:,,此種情況不成立舍去.綜合當(dāng)籬笆AD的長為6米時(shí),花圃最美觀.【點(diǎn)睛】本題考查反比例函數(shù)在生活中的運(yùn)用,長方形面積,一元二次方程的解法,根據(jù)方程與不等式組混合運(yùn)用確定花圃最美觀是解題關(guān)鍵.13.(2022秋·河北保定·九年級(jí)校聯(lián)考階段練習(xí))如圖,某課外興趣小組計(jì)劃利用已有的籬笆圈成一個(gè)一邊靠墻,面積為的矩形花園,其中墻長為,現(xiàn)在可用的籬笆總長為.

(1)若設(shè),.請(qǐng)寫出關(guān)于的函數(shù)表達(dá)式;(2)若要使的籬笆全部用完,能否圍成面積為的花園?若能,請(qǐng)求出長和寬;若不能,請(qǐng)說明理由;(3)假設(shè)圍成矩形花園的三邊材料總長不超過,材料和的長都是整米數(shù),求滿足條件的所有圍建方案.【答案】(1)(2)能,長為,寬為(3),【分析】(1)由矩形的面積得,即可求解;(2)設(shè),則,由題意圍成的面積為的花園,列出一元二次方程,解方程即可;(3)由(1)可知,的取值1,3,5,15,再由,,得時(shí),,即可得出結(jié)論.【詳解】(1)解:依題意,,即,關(guān)于的函數(shù)表達(dá)式為.(2)能理由:設(shè),則依題意,,解得,即長為,寬為.(3)由,且,都為正整數(shù),∴可取1,3,5,15.∵,,∴符合條件的有:時(shí),.∴滿足條件的所有圍建方案:,.【點(diǎn)睛】本題考查了一元二次方程的應(yīng)用以及反比例函數(shù)的應(yīng)用,熟練掌握反比例函數(shù)的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出一元二次方程是解題的關(guān)鍵.14.(2023春·浙江杭州·八年級(jí)統(tǒng)考期末)如圖,利用已有的一面長為的墻,用籬笆圍一個(gè)面積為的矩形花圃.設(shè)的長為,的長為.

(1)求y關(guān)于x的函數(shù)表達(dá)式和自變量x的取值范圍.(2)邊和的長都是整數(shù),若圍成的矩形花圃的三邊籬笆的總長不超過,試求出滿足條件且用料最省的方案.【答案】(1)(2),.【分析】(1)利用矩形面積公式,得到y(tǒng)關(guān)于x的函數(shù)表達(dá)式,再利用已知墻長,即可求出自變量x的取值范圍;(2)先根據(jù)邊和的長都是整數(shù),得出可能的取值,再結(jié)合三邊籬笆的總長不超過,確定的值,分別計(jì)算即可得到滿足條件且用料最省的方案.【詳解】(1)解:由題意得:,,已有的一面墻長為,,,y關(guān)于x的函數(shù)表達(dá)式為,(2)解:邊和的長都是整數(shù),且,的值可以為4、5、10、20,圍成的矩形花圃的三邊籬笆的總長不超過,,的值可以為4、5,當(dāng)時(shí),,則,當(dāng)時(shí),,則,滿足條件且用料最省的方案為,.【點(diǎn)睛】本題考查了反比例函數(shù)的實(shí)際應(yīng)用以及解不等式,正確理解題意,得出函數(shù)關(guān)系式,并確定自變量的取值范圍是解題關(guān)鍵.15.(2022·全國·九年級(jí)專題練習(xí))某學(xué)校要修建一個(gè)占地面積為64平方米的矩形體育活動(dòng)場(chǎng)地,四周要建上高為1米的圍擋.學(xué)校準(zhǔn)備了可以修建45米長的圍擋材料(可以不用完).設(shè)矩形地面的邊長米,米.(1)求關(guān)于的函數(shù)關(guān)系式(不寫自變量的取值范圍);(2)能否建造米的活動(dòng)場(chǎng)地?請(qǐng)說明理由;(3)若矩形地面的造價(jià)為1千元/平方米,側(cè)面圍擋的造價(jià)為0.5千元/平方米,建好矩形場(chǎng)地的總費(fèi)用為80.4千元,求出的值.(總費(fèi)用地面費(fèi)用圍擋費(fèi)用)【答案】(1);(2)不能,見解析;(3)10或6.4【分析】(1)根據(jù)矩形的面積是64平方米,即可得到,即;(2)把代入反比例解析式求出y,然后計(jì)算周長是否超過45即可得到答案;(3)根據(jù)題意列出總費(fèi)用關(guān)于x的方程求解,然后檢驗(yàn)周長是否超過45即可得到答案.【詳解】解:(1)∵矩形體育場(chǎng)占地面積為64平方米,∴.(2)不能.理由:把代入,得.周長為.∴不能建造米的活動(dòng)場(chǎng)地.(3)活動(dòng)場(chǎng)地造價(jià)為.整理得,解得,.經(jīng)檢驗(yàn),,均為原分式方程的解,且符合題意.當(dāng)時(shí),總周長為;當(dāng)時(shí),總周長為.綜上可得,的值為10或6.4.【點(diǎn)睛】本題主要考查了反比例函數(shù)和分式方程的實(shí)際應(yīng)用,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識(shí)進(jìn)行求解.考點(diǎn)4探究類16.(2023·河南駐馬店·統(tǒng)考三模)杠桿原理在生活中應(yīng)用廣泛,我國早在春秋時(shí)期就有使用,相傳商人范蠡觀農(nóng)夫從井中取水受到啟發(fā),發(fā)明了稱,其中就利用了杠桿原理.杠桿原理為:阻力×阻力臂=動(dòng)力×動(dòng)力臂.如圖1:

某數(shù)學(xué)興趣小組利用所學(xué)的函數(shù)知識(shí)對(duì)以上原理進(jìn)行探究:如圖2,小明取一根質(zhì)地均勻的木桿長,用細(xì)繩綁在木桿的中點(diǎn)處將其吊在空中,在中點(diǎn)的左側(cè)距中點(diǎn)處掛一個(gè)質(zhì)量為的物體,在中點(diǎn)右側(cè)用一個(gè)彈簧測(cè)力計(jì)(重力忽略不計(jì))豎直向下拉,使木桿處于水平狀態(tài),改變彈簧測(cè)力計(jì)與中點(diǎn)的距離,觀察彈簧測(cè)力計(jì)的示數(shù)的變化,在平面直角坐標(biāo)系中描出了一系列點(diǎn),并用平滑的曲線順次連接,得到如圖3所示的函數(shù)圖象.已知重力與質(zhì)量之間的關(guān)系式為:,為物體的重力(單位:),為物體的質(zhì)量(單位),.

(1)圖3中函數(shù)的解析式為__________,自變量的取值范圍是__________.(2)若點(diǎn)的位置不變,在不改變點(diǎn)與物體的距離及物體的質(zhì)量的前提下,要想使木桿平衡,彈簧測(cè)力計(jì)的示數(shù)最小可以是多少?【答案】(1),(2)彈簧測(cè)力計(jì)的示數(shù)最小可以是【分析】(1)根據(jù)圖象設(shè)函數(shù)解析式,將圖中點(diǎn)的坐標(biāo)代入即可求解,根據(jù)題意點(diǎn)是木桿的中點(diǎn),木桿全長,即可求得自變量的取值范圍;(2)根據(jù)函數(shù)圖象的增減性,可知當(dāng)時(shí),取得最小值,代入函數(shù)解析式求解即可.【詳解】(1)根據(jù)圖象設(shè)函數(shù)解析式為∵圖象過點(diǎn)代入求得∴函數(shù)的解析式為:∵點(diǎn)是木桿的中點(diǎn),木桿全長∴可知彈簧測(cè)力計(jì)到中點(diǎn)的距離最長為∴故答案為:,.(2)由(1),可知.∵∴當(dāng)時(shí),隨的增大而減?。帧摺喈?dāng)時(shí),取得最小值,最小值為.∴彈簧測(cè)力計(jì)的示數(shù)最小可以是.【點(diǎn)睛】本題考查了求反比例函數(shù)的解析式,反比例函數(shù)圖象的性質(zhì)等,解題的關(guān)鍵是根據(jù)題意求得自變量的取值范圍.17.(2023春·河北張家口·九年級(jí)張家口市第五中學(xué)??计谀┤鐖D,李老師設(shè)計(jì)了一個(gè)探究杠桿平衡條件的實(shí)驗(yàn):在一個(gè)自制類似天平的儀器的左邊固定托盤A中放置一個(gè)重物,在右邊的活動(dòng)托盤B(可左右移動(dòng))中放置一定質(zhì)量的砝碼,使得儀器左右平衡,改變活動(dòng)托盤B與點(diǎn)O的距離,觀察活動(dòng)托盤B中砝碼的質(zhì)量的變化情況.實(shí)驗(yàn)數(shù)據(jù)記錄如下表:10152025303020151210(1)把上表中的各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo)在如圖的平面直角坐標(biāo)系中描出相應(yīng)的點(diǎn),并用平滑曲線連接這些點(diǎn);(2)觀察所畫的圖像,猜測(cè)y與x之間的函數(shù)關(guān)系,求出函數(shù)關(guān)系式;(3)當(dāng)砝碼的質(zhì)量為時(shí),活動(dòng)托盤B與點(diǎn)O的距離是多少厘米?(4)當(dāng)活動(dòng)托盤B往左移動(dòng)時(shí),應(yīng)往活動(dòng)托盤B中添加還是減少砝碼?直接寫出答案.【答案】(1)畫圖見解析(2)(3)活動(dòng)托盤B與點(diǎn)O的距離是厘米.(4)活動(dòng)托盤B往左移動(dòng)時(shí),應(yīng)往活動(dòng)托盤B中添加砝碼.【分析】(1)先描點(diǎn),再利用平滑的曲線連接即可;(2)由給定的點(diǎn)的橫縱坐標(biāo)的積為常數(shù),可得是的反比例函數(shù),再求解解析式即可;(3)把代入,求解的值即可得到答案;(4)利用函數(shù)增減性即可得出,隨著活動(dòng)托盤B與O點(diǎn)的距離不斷減小,砝碼的示數(shù)應(yīng)該不斷增大..【詳解】(1)解:如圖,畫圖如下:(2)由橫縱坐標(biāo)的積為:,∴設(shè),則,∴函數(shù)解析式為:;(3)當(dāng)時(shí),則,即活動(dòng)托盤B與點(diǎn)O的距離是厘米.(4)∵,當(dāng)時(shí),隨的減小而增大,∴活動(dòng)托盤B往左移動(dòng)時(shí),應(yīng)往活動(dòng)托盤B中添加砝碼.【點(diǎn)睛】此題主要考查了反比例函數(shù)的應(yīng)用,此題是跨學(xué)科的綜合性問題,解答該類問題的關(guān)鍵是確定兩個(gè)變量之間的函數(shù)關(guān)系,然后利用待定系數(shù)法求出它們的關(guān)系式.18.(2023·陜西西安·統(tǒng)考三模)小聰在學(xué)習(xí)過程中遇到了一個(gè)函數(shù),小聰根據(jù)學(xué)習(xí)反比例函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖像和性質(zhì)進(jìn)行了探究.他先通過列表,并描出如圖所示的圖像上的部分點(diǎn).(1)請(qǐng)你幫助小聰畫出該函數(shù)的圖像;(2)該函數(shù)圖像可以看成是由的圖像平移得到的,其平移方式為;(3)直接寫出不等式的解集為.【答案】(1)見詳解(2)向下平移2個(gè)單位長度(3)或【分析】(1)根據(jù)畫函數(shù)圖像的步驟畫出圖像即可;(2)根據(jù)反比例函數(shù)的性質(zhì)解答即可;(3)根據(jù)反比例函數(shù)的圖像與性質(zhì),結(jié)合畫出的函數(shù)圖像即可得出結(jié)論.【詳解】(1)解:畫出函數(shù)圖像如下:(2)解:該函數(shù)圖像可以看成是由的圖像平移得到的,其平移方式為向下平移2個(gè)單位長度.故答案為:向下平移2個(gè)單位長度;(3)解:由圖像可得,不等式的解集為或.故答案為:或.【點(diǎn)睛】本題只要考查了反比例函數(shù)的知識(shí),熟練掌握數(shù)形結(jié)合的思想是解題的關(guān)鍵.19.(2023春·江蘇·八年級(jí)專題練習(xí))小明探究下列問題:商場(chǎng)將單價(jià)不同的甲、乙兩種糖果混合成什錦糖售賣.若該商場(chǎng)采用以下兩種不同方式混合:方式1:將質(zhì)量相等的甲、乙糖果進(jìn)行混合;方式2:將總價(jià)相等的甲、乙糖果進(jìn)行混合.哪種混合方式的什錦糖的單價(jià)更低?(1)小明設(shè)甲、乙糖果的單價(jià)分別為、,用含、的代數(shù)式分別表示兩種混合方式的什錦糖的單價(jià).請(qǐng)你寫出他的解答過程;(2)為解決問題,小明查閱了資料,發(fā)現(xiàn)以下正確結(jié)論:結(jié)論1:若,則;若,則;若,則;結(jié)論2:反比例函數(shù)的圖像上的點(diǎn)的橫坐標(biāo)與縱坐標(biāo)互為倒數(shù);結(jié)論3:若的坐標(biāo)為,的坐標(biāo)為,則線段的中點(diǎn)坐標(biāo)為.小明利用上述結(jié)論順利解決此問題,請(qǐng)你按照他的思路寫出解答過程:①利用結(jié)論1求解;②利用結(jié)論2、結(jié)論3求解.【答案】(1),,過程見解析(2)①見解析;②見解析【分析】(1)根據(jù)單價(jià)的公式即可得到兩種不同方式的單價(jià);(2)①讓兩種不同方式的單價(jià)作差法比較即可;②設(shè)A、B是反比例函數(shù)()的圖像上兩點(diǎn),是線段的中點(diǎn),由結(jié)論2,得點(diǎn)A、B的橫坐標(biāo)分別為、,由結(jié)論3,得點(diǎn)C的坐標(biāo)為,由結(jié)論2,得點(diǎn)E的坐標(biāo)為,可得,即可得答案.【詳解】(1)解:采用方式1混合的什錦糖的單價(jià)為,采用方式2混合的什錦糖的單價(jià)為;(2)①∵,,,∴,,∴,由結(jié)論1,得,∴采用方式2混合的什錦糖的單價(jià)更低;②如圖,設(shè)A、B是反比例函數(shù)()的圖像上兩點(diǎn),是線段的中點(diǎn),令點(diǎn)A、B的縱坐標(biāo)分別為a、b,不妨設(shè),過點(diǎn)C作軸,垂足為D,CD與此函數(shù)圖像交于點(diǎn)E,由結(jié)論2,得點(diǎn)A、B的橫坐標(biāo)分別為、,由結(jié)論3,得點(diǎn)C的坐標(biāo)為,∵點(diǎn)C與點(diǎn)E的橫坐標(biāo)相等,∴點(diǎn)E的橫坐標(biāo)為,由結(jié)論2,得點(diǎn)E的坐標(biāo)為,∵E是線段CD上一點(diǎn),∴,∴,∴采用方式2混合的什錦糖的單價(jià)更低.【點(diǎn)睛】本題考查了代數(shù)式的大小比較,反比例函數(shù)的實(shí)際應(yīng)用,中點(diǎn)坐標(biāo)公式等知識(shí),解題的關(guān)鍵是將實(shí)際問題轉(zhuǎn)化為函數(shù)模型.20.(2023春·山西·九年級(jí)專題練習(xí))閱讀與思考下面是小宇同學(xué)的一篇日記,請(qǐng)仔細(xì)閱讀并完成相應(yīng)的任務(wù).在物理活動(dòng)課上,我們“博學(xué)”小組的同學(xué),參加了一次“探究電功率P與電阻R之間的函數(shù)關(guān)系”的活動(dòng).

第一步,實(shí)驗(yàn)測(cè)量.根據(jù)物理知識(shí),改變電阻R的大小,通過測(cè)量電路中的電流,計(jì)算電功率P.第二步,整理數(shù)據(jù).…3691215……31.510.750.7…第三步,描點(diǎn)連線.以R的數(shù)值為橫坐標(biāo),對(duì)應(yīng)P的數(shù)值為縱坐標(biāo)在平面直角坐標(biāo)系中描出以表中數(shù)值為坐標(biāo)的各點(diǎn),并用光滑的曲線順次連接這些點(diǎn).在數(shù)據(jù)分析時(shí),我發(fā)現(xiàn)一個(gè)數(shù)據(jù)有錯(cuò)誤,重新測(cè)量計(jì)算后,證明了我的猜想正確,并修改了表中這個(gè)數(shù)據(jù).實(shí)驗(yàn)結(jié)束后,大家都有很多收獲,每人都撰寫了日記.任務(wù):

(1)表格中錯(cuò)誤的數(shù)據(jù)是______,P與R的函數(shù)表達(dá)式為______;(2)在平面直角坐標(biāo)系中,畫出P與R的函數(shù)圖象;(3)結(jié)合圖象,直接寫出P大于6W時(shí)R的取值范圍.【答案】(1)0.7,(2)見解析(3)當(dāng)P大于6W,R的取值范圍為【分析】(1)根據(jù)P與R是反比例函數(shù)求解即可;(2)利用描點(diǎn)法畫出圖象即可;(3)觀察圖象,直接寫出答案即可.【詳解】(1)解:觀察表中的數(shù)據(jù)發(fā)現(xiàn)P與R的乘積固定不變,等于9,故P與R是反比例函數(shù),其中,數(shù)據(jù)錯(cuò)誤;設(shè)P與R的函數(shù)解析式為,把代入得,,解得,,P與R的函數(shù)解析式為,故答案為:,.(2)解:P關(guān)于R的函數(shù)圖象如圖:

(3)解:當(dāng),結(jié)合圖象,P大于6W時(shí)R的取值范圍是.【點(diǎn)睛】本題考查了反比例函數(shù)圖象與性質(zhì),解題關(guān)鍵是根據(jù)表格數(shù)據(jù)確定兩個(gè)變量成反比例,求出函數(shù)解析式.考點(diǎn)5利潤類21.(2021·廣西南寧·南寧市天桃實(shí)驗(yàn)學(xué)校??既#┰谛滦凸跔罘窝滓咔槠陂g,某農(nóng)業(yè)企業(yè)合作社決定對(duì)一種特色水果開展線上銷售,考慮到實(shí)際情況,一共開展了次線上銷售,綜合考慮各種因素,該種水果的成本價(jià)為元/噸,銷售結(jié)束后,經(jīng)過統(tǒng)計(jì)得到了如下信息:信息1:設(shè)次線上銷售水果(噸),已知是的一次函數(shù),且第次線上銷售水果為噸,然后每一次總比前一次銷售量減少噸;信息2:該水果的銷售單價(jià)(萬元/噸)均由基本價(jià)和浮動(dòng)價(jià)兩部分組成,其中基本價(jià)為萬元/噸,第至次線上銷售的浮動(dòng)價(jià)與銷售場(chǎng)次成正比;第至次線上銷售的浮動(dòng)價(jià)與銷售場(chǎng)次成反比;信息3:如下表格:(次)(萬元/噸)(1)求與之間的函數(shù)關(guān)系式;(2)若(萬元/噸),求的值;(3)在這次線上銷售中,那一次線上銷售獲得的利潤最大?最大利潤是多少?【答案】(1);(2),;(3)第次,萬.【分析】(1)設(shè),把時(shí),,時(shí),分別代入運(yùn)算即可;(2)確定函數(shù)解析式,代入和的值運(yùn)算即可;(3)分類討論前十次和后十次的銷售最大利潤是多少,再比較大小即可.【詳解】解:(1)∵是的一次函數(shù),則由第次線上銷售水果為噸可得:時(shí),,由每一次總比前一次銷售量減少噸可得:時(shí),分別代入可得:解得:∴與之間的函數(shù)關(guān)系式為:(2)設(shè)第至次時(shí)與的函數(shù)關(guān)系式為:,第至次時(shí)與的函數(shù)關(guān)系式為:;由題意可得:,解得:,∴第至次時(shí)與的函數(shù)關(guān)系式為:,第至次時(shí)與的函數(shù)關(guān)系式為:;把代入可得:把代入可得:∴的值為和(3)設(shè)利潤當(dāng)時(shí),∴時(shí),最大利潤為萬當(dāng)時(shí),∴時(shí),最大利潤為萬∵∴第次銷售獲得的利潤最大,最大利潤是萬答:第次銷售獲得的利潤最大,最大利潤是萬.【點(diǎn)睛】本題主要考查了函數(shù)的應(yīng)用,其中涉及到了一次函數(shù),反比例函數(shù),二次函數(shù)等知識(shí)點(diǎn),合理從表格中獲取關(guān)鍵信息列式是解題的關(guān)鍵.22.(2021秋·全國·九年級(jí)專題練習(xí))近年來,隨著盲盒經(jīng)濟(jì)的崛起,潮玩市場(chǎng)備受關(guān)注,盲盒里面通常裝的是動(dòng)漫、影視作品的周邊,或者設(shè)計(jì)師單獨(dú)設(shè)計(jì)出來的玩偶.某公司生產(chǎn)一種盲盒,在自動(dòng)售賣機(jī)銷售,已知這種盲盒的成本是每盒40元,物價(jià)局規(guī)定,這種盲盒的市場(chǎng)銷售單價(jià)不得高于60元,不得低于45元.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),銷售單價(jià)不高于50元時(shí),每月銷售量與銷售單價(jià)成反比例函數(shù)關(guān)系;高于50元時(shí),每月銷售量與銷售單價(jià)成一次函數(shù)關(guān)系,下表是部分市場(chǎng)調(diào)查數(shù)據(jù):銷售單價(jià)/元4550545860月銷售量/盒600540500460440(1)設(shè)月銷售量為盒,銷售單價(jià)為元,求與之間的函數(shù)關(guān)系式;(2)當(dāng)這種盲盒的銷售單價(jià)為多少元時(shí),月銷售利潤最大?月最大銷售利潤是多少元?【答案】(1);(2)當(dāng)銷售單價(jià)為60元時(shí),月銷售利潤最大,月最大銷售利潤是8800元.【分析】(1)根據(jù)題意分情況討論即可求解函數(shù);(2)根據(jù)題意分情況列出反比例函數(shù)與二次函數(shù),根據(jù)題意并結(jié)合函數(shù)的性質(zhì)即可求解最值.【詳解】解:(1)由題意得,當(dāng)時(shí),,當(dāng)時(shí),,把和代入得:,解得:,∴,∴與之間的函數(shù)關(guān)系式為:;(2)設(shè)這種盲盒的銷售單價(jià)為元,月銷售利潤為元,則,①當(dāng)時(shí),,∵隨的增大而增大,∴當(dāng)時(shí),的最大值(元);②當(dāng)時(shí),,∵,∴當(dāng)時(shí),隨的增大而增大,∴當(dāng)時(shí),的最大值(元),∵,∴當(dāng)銷售單價(jià)為60元時(shí),月銷售利潤最大,月最大銷售利潤是8800元.【點(diǎn)睛】此題主要考查函數(shù)的實(shí)際應(yīng)用,解題的關(guān)鍵是根據(jù)題意找到數(shù)量關(guān)系列出函數(shù)關(guān)系式求解.23.(2021·江蘇連云港·統(tǒng)考二模)我縣某農(nóng)業(yè)合作社對(duì)一種特色水果一共開展了35次線上銷售,該種水果的成本價(jià)為每噸4萬元,銷售結(jié)束后,經(jīng)過統(tǒng)計(jì)得到了如下信息;信息1:設(shè)第次線上銷售水果(噸),且第一次線上銷售水果為39噸,然后每一次總比前一次銷售減少1噸,信息2:該水果的銷售單價(jià)(萬元/噸)與銷售場(chǎng)次之間的函數(shù)關(guān)系式為,且當(dāng)時(shí),;當(dāng)時(shí),.請(qǐng)根據(jù)以上信息,解決下列問題.(1)與之間的函數(shù)表達(dá)式為;(2)若(萬元/噸),求的值;(3)在這35次線上銷售中,哪一次線上銷售獲得利潤最大?最大利潤是多少?【答案】(1);(2)4;(3)第19次線上銷售獲得利潤最大,且最大利潤是79.8萬元.【分析】(1)根據(jù)“第一次線上銷售水果為39噸,然后每一次總比前一次銷售減少1噸”即可列出與之間的函數(shù)表達(dá)式為;(2)根據(jù)當(dāng)時(shí),;當(dāng)時(shí),即可求出k1、k2的值,進(jìn)而得到p與x的函數(shù)關(guān)系式為,再把代入分段函數(shù),分別求出x=4,x=40,舍去不合題意的x的值,問題得解,(3)設(shè)每場(chǎng)獲得的利潤為(萬元),分和兩種情況,求出w與x的函數(shù)關(guān)系式,再分別求出最大值,進(jìn)行比較,問題得解.【詳解】解:(1)∵第一次線上銷售水果為39噸,然后每一次總比前一次銷售減少1噸,∴與之間的函數(shù)表達(dá)式為;(2)當(dāng)時(shí),,所以有,解之得,.當(dāng)時(shí),,所以有,解之得,.∴,當(dāng)時(shí),,解之得,當(dāng)時(shí),,解得.,所以舍去.∴的值為4;(3)設(shè)每場(chǎng)獲得的利潤為(萬元),則有當(dāng)時(shí),,∴當(dāng)時(shí),最大,且最大值為萬元.當(dāng)時(shí),,∴當(dāng)時(shí),最大,且最大值為萬元.∴第19次線上銷售獲得利潤最大,且最大利潤是79.8萬元.【點(diǎn)睛】本題為一次函數(shù)、二次函數(shù)、反比例函數(shù)的綜合應(yīng)用,考查了列一次函數(shù)解析式,分段函數(shù)、二次函數(shù)的性質(zhì),反比例函數(shù)的性質(zhì)等知識(shí),綜合性較強(qiáng),熟練掌握各函數(shù)性質(zhì)是解題關(guān)鍵,注意當(dāng)時(shí),函數(shù)不是反比例函數(shù),但注意借鑒反比例函數(shù)性質(zhì)即可求解.24.(2021·河北唐山·統(tǒng)考一模)某公司生產(chǎn)一種產(chǎn)品,月銷售量為噸(),每噸售價(jià)為7萬元,每噸的成本(萬元)由兩部分組成,一部分是原材料費(fèi)用固定不變,另一部分人力等費(fèi)用,與月銷售量成反比,市場(chǎng)部研究發(fā)現(xiàn)月銷售量噸與月份(為1~12的正整數(shù))符合關(guān)系式(為常數(shù)),參考下面給出的數(shù)據(jù)解決問題.月份(月)12成本(萬元/噸)55.6銷售量為(噸/月)120100(1)求與的函數(shù)關(guān)系式;(2)求的值;(3)在這一年12個(gè)月中,①求月最大利潤;②若第個(gè)月和第個(gè)月的利潤相差最大,直接寫出的值.【答案】(1);(2);(3)①240,②或11【分析】(1)設(shè),將表中相關(guān)數(shù)據(jù)代入可求得a、b,由此可求得函數(shù)關(guān)系式;(2)將n=1、x=120代入x=2n2﹣26n+k2可求得k的值;(3)第m個(gè)月的利潤W,第(m+1)個(gè)月的利潤為,分情況作差結(jié)合m的范圍,由一次函數(shù)性質(zhì)可得.【詳解】解:(1)由題意,設(shè),由表中數(shù)據(jù)可得:,解得:∴與的函數(shù)關(guān)系式為;(2)將,代入,得,解得,∴,將,代入也符合,∴;(3)①設(shè)第個(gè)月的利潤為,則,∴對(duì)稱軸為,∴當(dāng)或12時(shí),取得最大值為240,②設(shè)第m個(gè)月的利潤為W,第(m+1)個(gè)月的利潤為,則第(m+1)個(gè)月的利潤=10[(m+1)2﹣13(m+1)+36]=10(m2﹣11m+24),若W≥,W﹣=20(6﹣m),m取最小1,W﹣取得最大值100;若W<,﹣W=20(m﹣6),由m+1≤12知m取最大11,﹣W取得最大值100;∴m=1或11.【點(diǎn)睛】本題主要考查反比例函數(shù)和二次函數(shù)的應(yīng)用,理解題意準(zhǔn)確梳理所涉變量,并熟練掌握待定系數(shù)法求函數(shù)解析式、利潤的相等關(guān)系列出解析式是解題的關(guān)鍵.25.(2023·山東淄博·統(tǒng)考一模)在新型冠狀肺炎疫情期間,某農(nóng)業(yè)合作社決定對(duì)一種特色水果開展線上銷售,考慮到實(shí)際情況,一共開展了30次線上銷售,綜合考慮各種因素,該種水果的成本價(jià)為每噸2萬元,銷售結(jié)束后,經(jīng)過統(tǒng)計(jì)得到了如下信息:信息1:設(shè)第次線上銷售水果(噸),且第一次線上銷售水果為39噸,然后每一次總比前一次銷售減少1噸;信息2:該水果的銷售單價(jià)(萬元/噸)均由基本價(jià)和浮動(dòng)價(jià)兩部分組成,其中基本價(jià)保持不變,第1次線上銷售至第15次線上銷售的浮動(dòng)價(jià)與銷售場(chǎng)次成正比,第16次線上銷售至第30次線上銷售的浮動(dòng)價(jià)與銷售場(chǎng)次成反比;信息3:(次)2824(萬元)2.22.83請(qǐng)根據(jù)以上信息,解決下列問題.(1)求與之間的函數(shù)關(guān)系式;(2)若(萬元/噸),求的值;(3)在這30次線上銷售中,哪一次線上銷售獲得利潤最大?最大利潤是多少?【答案】(1);(2)當(dāng)時(shí),;當(dāng)時(shí),;(3)第15次,利潤最大為36萬元【分析】(1)設(shè)第x次線上銷售水果y(噸),根據(jù)“第一次線上銷售水果為39噸,然后每一次總比前一次銷售量減少1噸”列出函數(shù)關(guān)系式即可;(2)確定函數(shù)解析式,代入p值求解即可;(3)首先分類討論,求出①當(dāng)1≤x≤15時(shí),②當(dāng)16<x≤30時(shí),該超市銷售這種商品所獲的利潤是多少,然后比較大小,判斷出銷售這種商品第幾天的利潤最大,最大利潤是多少即可.【詳解】(1)設(shè)第次線上銷售水果(噸),且第一次線上銷售水果為39噸,然后每一次總比前一次銷售減少1噸;∴與之間的函數(shù)關(guān)系式:;(2)設(shè)第1場(chǎng)~第15場(chǎng)時(shí)與的函數(shù)關(guān)系式為;第16場(chǎng)~第30場(chǎng)時(shí)與的函數(shù)關(guān)系式為;依題意得,解得,,∴又當(dāng)時(shí),有,解之得,,∴當(dāng)時(shí),,解之得,,當(dāng)時(shí),,解之得,,(3)設(shè)每場(chǎng)獲得的利潤為(萬元),則有:當(dāng)時(shí),所以當(dāng)時(shí),最大,最大為37.5萬元;當(dāng)時(shí),當(dāng)時(shí),最大,最大為36萬元∴在這30次線上銷售中,第15次線上銷售獲得利潤最大,最大利潤37.5萬元.【點(diǎn)睛】此題主要考查了二次函數(shù)及反比例函數(shù)的應(yīng)用,考查了單價(jià)、總價(jià)、數(shù)量的關(guān)系,以及函數(shù)解析式的求法,要熟練掌握.考點(diǎn)6新定義問題26.(2023·四川達(dá)州·統(tǒng)考二模)【知識(shí)遷移】我們知道,函數(shù)的圖像是由二次函數(shù)的圖像向右平移m個(gè)單位,再向上平移n個(gè)單位得到.類似地,函數(shù)的圖像是由反比例函數(shù)的圖像向右平移m個(gè)單位,再向上平移n個(gè)單位得到,其對(duì)稱中心坐標(biāo)為.【理解應(yīng)用】函數(shù)的圖像可以由函數(shù)的圖像向右平移______個(gè)單位,再向上平移______個(gè)單位得到,其對(duì)稱中心坐標(biāo)為______.【靈活運(yùn)用】如圖,在平面直角坐標(biāo)系中,請(qǐng)根據(jù)所給的的圖像畫出函數(shù)的圖像,并根據(jù)所畫圖像直接寫出,當(dāng)x在什么范圍內(nèi)變化時(shí),?

【實(shí)際應(yīng)用】某老師對(duì)一位學(xué)生的學(xué)習(xí)情況進(jìn)行跟蹤研究.假設(shè)剛學(xué)完新知識(shí)時(shí)的記憶存留量為1.新知識(shí)學(xué)習(xí)后經(jīng)過的時(shí)間為x,發(fā)現(xiàn)該生的記憶存留量隨x變化的函數(shù)關(guān)系為;若在時(shí)進(jìn)行一次復(fù)習(xí),發(fā)現(xiàn)他復(fù)習(xí)后的記憶存留量是復(fù)習(xí)前的2倍(復(fù)習(xí)時(shí)間忽略不計(jì)),且復(fù)習(xí)后的記憶存量隨x變化的函數(shù)關(guān)系為.如果記憶存留量為時(shí)是復(fù)習(xí)的“最佳時(shí)機(jī)點(diǎn)”,且他第一次復(fù)習(xí)是在“最佳時(shí)機(jī)點(diǎn)”進(jìn)行的,那么當(dāng)x為何值時(shí),是他第二次復(fù)習(xí)的“最佳時(shí)機(jī)點(diǎn)”?【答案】理解應(yīng)用:3,2,;靈活運(yùn)用:;實(shí)際應(yīng)用:【分析】理解應(yīng)用:根據(jù)平移的特點(diǎn)進(jìn)行解答即可;靈活應(yīng)用:先根據(jù)函數(shù)關(guān)系式,得出函數(shù)的圖像可以由函數(shù)的圖像向右平移2個(gè)單位,再向下平移2個(gè)單位得到,其對(duì)稱中心坐標(biāo)為,畫出函數(shù)圖像,根據(jù)圖像得出x的取值范圍即可;實(shí)際應(yīng)用:求出當(dāng)時(shí)進(jìn)行第一次復(fù)習(xí),復(fù)習(xí)后的記憶留存量變?yōu)?,得出點(diǎn)在函數(shù)的圖象上,求出,求出當(dāng)時(shí),,即可得出結(jié)果.【詳解】解:理解應(yīng)用:函數(shù)的圖像可以由函數(shù)的圖像向右平移3個(gè)單位,再向上平移2個(gè)單位得到,其對(duì)稱中心坐標(biāo)為,故答案為:3,2,;靈活運(yùn)用:函數(shù)的圖像可以由函數(shù)的圖像向右平移2個(gè)單位,再向下平移2個(gè)單位得到,其對(duì)稱中心坐標(biāo)為,畫出函數(shù)圖像,如圖所示:

根據(jù)函數(shù)圖像可知,當(dāng)時(shí),;實(shí)際應(yīng)用:解當(dāng)時(shí),,解得時(shí)進(jìn)行第一次復(fù)習(xí),復(fù)習(xí)后的記憶留存量變?yōu)?,∴點(diǎn)在函數(shù)的圖象上,則,∴,當(dāng)時(shí),解得,∴時(shí),是他第二次復(fù)習(xí)的“最佳時(shí)機(jī)點(diǎn)”.【點(diǎn)睛】本題主要考查了反比例函數(shù)的應(yīng)用,函數(shù)圖像的平移,解題的關(guān)鍵是理解題意,熟練掌握函數(shù)圖像的平移特點(diǎn),數(shù)形結(jié)合.27.(2023·江蘇南通·校考三模)定義:在平面直角坐標(biāo)系中,對(duì)于某函數(shù)圖象上的一點(diǎn)P,先向右平移1個(gè)單位長度,再向上平移個(gè)單位長度得到點(diǎn)Q,若點(diǎn)Q也在該函數(shù)圖象上,則稱點(diǎn)P為該函數(shù)圖象的“n倍平點(diǎn)”.(1)函數(shù)①;②;③中,其圖象存在“2倍平點(diǎn)”的是_______(填序號(hào));(2)若反比例函數(shù),圖象恰有1個(gè)“n倍平點(diǎn)”,求n的值;(3)求函數(shù)圖象的“3倍平點(diǎn)”的坐標(biāo).【答案】(1)②(2)(3)或【分析】(1)根據(jù)函數(shù)圖象的“n倍平點(diǎn)”的定義逐個(gè)進(jìn)行判斷即可;(2)設(shè),則,把代入得,根據(jù)圖象恰有1個(gè)“n倍平點(diǎn)”,得出,即可求出答案;(3)當(dāng)時(shí),,當(dāng)時(shí),,分兩種情況,根據(jù)函數(shù)圖象的“n倍平點(diǎn)”的定義分別計(jì)算即可得出結(jié)論.【詳解】(1)當(dāng)時(shí),①設(shè),則,當(dāng)時(shí),,∴點(diǎn)不在的圖象上.∴該函數(shù)圖象不存在“2倍平點(diǎn)”.②設(shè),則,當(dāng)時(shí),,∴點(diǎn)在的圖象上.∴該函數(shù)圖象存在“2倍平點(diǎn)”.③設(shè),則,當(dāng)時(shí),,∴點(diǎn)不在的圖象上.∴該函數(shù)圖象不存在“2倍平點(diǎn)”.故答案是②;(2)設(shè),則,把代入得,,即,∵圖象恰有1個(gè)“n倍平點(diǎn)”,∴.∴.∵,∴.(3)當(dāng)時(shí),,設(shè),則,把代入得,,解得:,∴,.∴,.當(dāng)時(shí),,設(shè),則,把代入得,,解得:,∴,.∴,.綜上所述,函數(shù)圖象的“3倍平點(diǎn)”的坐標(biāo)是或.【點(diǎn)睛】本題主要考查了新定義,正確理解新定義:函數(shù)圖象的“n倍平點(diǎn)”是解題的關(guān)鍵.28.(2023春·浙江·八年級(jí)專題練習(xí))為了探索函數(shù)的圖象與性質(zhì),我們參照學(xué)習(xí)函數(shù)的過程與方法.x…11.5234.569…y…107.56.566.57.510…列表:描點(diǎn):在平面直角坐標(biāo)系中,以自變量x的取值為橫坐標(biāo),以相應(yīng)的函數(shù)值y為縱坐標(biāo),描出相應(yīng)的點(diǎn),如圖所示.(1)觀察所描出點(diǎn)的分布,用一條光滑的曲線將點(diǎn)順次連接起來,作出函數(shù)圖象.(2)已知點(diǎn)(x?,y?)、(x?,y?)在函數(shù)圖象上,結(jié)合表格和函數(shù)圖象,回答下列問題(填“>”“=”或“<”):①若,則;②若,

則;③若,則(3)某農(nóng)戶要用一些圍欄建造一個(gè)的長方形雞圈,設(shè)雞圈的一邊長為,所需圍欄長度為.①請(qǐng)直接寫出y與x之間的函數(shù)關(guān)系式;②若圍欄的單價(jià)為50元/m,且該農(nóng)戶買圍欄的預(yù)算不超過750元,在不考慮其他影響因素的情況下,雞圈的一邊長x應(yīng)控制在什么范圍內(nèi)?【答案】(1)圖象見解析(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論