2024屆上海市上海師范大學(xué)第二附屬中學(xué)高一上數(shù)學(xué)期末監(jiān)測試題含解析_第1頁
2024屆上海市上海師范大學(xué)第二附屬中學(xué)高一上數(shù)學(xué)期末監(jiān)測試題含解析_第2頁
2024屆上海市上海師范大學(xué)第二附屬中學(xué)高一上數(shù)學(xué)期末監(jiān)測試題含解析_第3頁
2024屆上海市上海師范大學(xué)第二附屬中學(xué)高一上數(shù)學(xué)期末監(jiān)測試題含解析_第4頁
2024屆上海市上海師范大學(xué)第二附屬中學(xué)高一上數(shù)學(xué)期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆上海市上海師范大學(xué)第二附屬中學(xué)高一上數(shù)學(xué)期末監(jiān)測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.用樣本估計總體,下列說法正確的是A.樣本的結(jié)果就是總體的結(jié)果B.樣本容量越大,估計就越精確C.樣本的標(biāo)準(zhǔn)差可以近似地反映總體的平均狀態(tài)D.數(shù)據(jù)的方差越大,說明數(shù)據(jù)越穩(wěn)定2.設(shè),,則a,b,c的大小關(guān)系是()A. B.C. D.3.在空間坐標(biāo)系中,點關(guān)于軸的對稱點為()A. B.C. D.4.已知函數(shù)f(x)=是奇函數(shù),若f(2m-1)+f(m-2)≥0,則m的取值范圍為()A. B.C. D.5.已知直線與直線平行,則的值為A.1 B.-1C.0 D.-1或16.將函數(shù)的圖象向左平移個單位長度,再向下平移個單位長度,得到函數(shù)的圖象,那么可以取的值為()A. B.C. D.7.已知函數(shù),,的零點依次為,則以下排列正確的是()A. B.C. D.8.已知實數(shù),且,則的最小值是()A.6 B.C. D.9.如圖所示,觀察四個幾何體,其中判斷錯誤的是()A.不是棱臺 B.不是圓臺C.不是棱錐 D.是棱柱10.把函數(shù)y=cos2x+1的圖象上所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),然后向左平移1個單位長度,再向下平移1個單位長度,得到的圖象是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知扇形的圓心角為,半徑為,則扇形的面積為______12.當(dāng)時,函數(shù)的最大值為________.13.函數(shù)的最大值為,其圖象相鄰兩條對稱軸之間的距離為(1)求函數(shù)的解析式;(2)設(shè),且,求的值14.函數(shù)的定義域是__________.15.函數(shù)在上為單調(diào)遞增函數(shù),則實數(shù)的取值范圍是______16.下列命題中,正確命題的序號為______①單位向量都相等;②若向量,滿足,則;③向量就是有向線段;④模為的向量叫零向量;⑤向量,共線與向量意義是相同的三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)為偶函數(shù).(1)判斷在上的單調(diào)性并證明;(2)求函數(shù)在上的最小值.18.2022年新冠肺炎仍在世界好多國家肆虐,盡管我國抗疫取得了很大的成績,疫情也得到了很好的遏制,但由于整個國際環(huán)境的影響,時而也會出現(xiàn)一些散發(fā)病例,故而抗疫形勢依然艱巨.我市某小區(qū)為了防止疫情在小區(qū)出現(xiàn),嚴(yán)防外來人員進入小區(qū),切實保障居民正常生活,設(shè)置“特殊值班崗”.現(xiàn)有包含甲、乙在內(nèi)的4名志愿者參與該工作,每人安排一天,每4天一輪.在一輪的“特殊值班崗”安排中,求:(1)甲、乙兩人相鄰值班的概率;(2)甲或乙被安排在前2天值班的概率19.已知函數(shù)f(x)=-x2+2ax+1-a在x∈[0,1]時有最大值2,求a的值20.在平面直角坐標(biāo)系中,已知角的頂點為坐標(biāo)原點,始邊為軸的正半軸,終邊過點(1)求的值;(2)求的值21.已知集合A=x13≤log(1)求A,B;(2)求?U(3)如果C=xx<a,且A∩C≠?,求a

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】解:因為用樣本估計總體時,樣本容量越大,估計就越精確,成立選項A顯然不成立,選項C中,樣本的標(biāo)準(zhǔn)差可以近似地反映總體的穩(wěn)定狀態(tài),、數(shù)據(jù)的方差越大,說明數(shù)據(jù)越不穩(wěn)定,故選B2、C【解析】根據(jù)指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì),求得的取值范圍,即可求解.【詳解】由對數(shù)的性質(zhì),可得,又由指數(shù)函數(shù)的性質(zhì),可得,即,且,所以.故選:C.3、C【解析】兩點關(guān)于軸對稱,則縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù),豎坐標(biāo)互為相反數(shù),由此可直接得出結(jié)果.【詳解】解:兩點關(guān)于軸對稱,則縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù),豎坐標(biāo)互為相反數(shù),所以點關(guān)于軸的對稱點的坐標(biāo)是.故選:C.4、B【解析】由已知結(jié)合f(0)=0求得a=-1,得到函數(shù)f(x)在R上為增函數(shù),利用函數(shù)單調(diào)性化f(2m-1)+f(m-2)≥0為f(2m-1)≥f(-m+2),即2m-1≥-m+2,則答案可求【詳解】∵函數(shù)f(x)=的定義域為R,且是奇函數(shù),,即a=-1,∵2x在(-∞,+∞)上為增函數(shù),∴函數(shù)在(-∞,+∞)上為增函數(shù),由f(2m-1)+f(m-2)≥0,得f(2m-1)≥f(-m+2),∴2m-1≥-m+2,可得m≥1∴m的取值范圍為m≥1故選B【點睛】本題考查函數(shù)單調(diào)性與奇偶性的應(yīng)用,考查數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題5、A【解析】由于直線l1:ax+y-1=0與直線l2:x+ay+=0平行所以,即-1或1,經(jīng)檢驗成立.故選A.6、B【解析】寫出平移變換后的函數(shù)解析式,將函數(shù)的解析式利用二倍角公式降冪,化為正弦型函數(shù),進而可得出的表達式,利用賦特殊值可得出結(jié)果.【詳解】將函數(shù)的圖象向左平移個單位長度,再向下平移個單位長度,所得圖象對應(yīng)的函數(shù)的解析式為,,,解得,當(dāng)時,.故選:B.【點睛】本題考查利用三角函數(shù)圖象變換求參數(shù),解題的關(guān)鍵就是結(jié)合圖象變換求出變換后所得函數(shù)的解析式,考查計算能力,屬于中等題.7、B【解析】在同一直角坐標(biāo)系中畫出,,與的圖像,數(shù)形結(jié)合即可得解【詳解】函數(shù),,的零點依次為,在同一直角坐標(biāo)系中畫出,,與的圖像如圖所示,由圖可知,,,滿足故選:B.【點睛】方法點睛:已知函數(shù)有零點(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,進而構(gòu)造兩個函數(shù),然后在同一平面直角坐標(biāo)系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解8、B【解析】構(gòu)造,利用均值不等式即得解【詳解】,當(dāng)且僅當(dāng),即,時等號成立故選:B【點睛】本題考查了均值不等式在最值問題中的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算能力,屬于中檔題9、C【解析】利用幾何體的定義解題.【詳解】A.根據(jù)棱臺的定義可知幾何體不是棱臺,所以A是正確的;B.根據(jù)圓臺的定義可知幾何體不是圓臺,所以B是正確的;C.根據(jù)棱錐的定義可知幾何體是棱錐,所以C是錯誤的;D.根據(jù)棱柱的定義可知幾何體是棱柱,所以D是正確的.故答案為C【點睛】本題主要考查棱錐、棱柱、圓臺、棱臺的定義,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.10、A【解析】由題意,的圖象上所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),即解析式為,向左平移一個單位為,向下平移一個單位為,利用特殊點變?yōu)?選A.點睛:三角函數(shù)的圖象變換,提倡“先平移,后伸縮”,但“先伸縮,后平移”也常出現(xiàn)在題目中,所以也必須熟練掌握.無論是哪種變形,切記每一個變換總是對字母而言.函數(shù)是奇函數(shù);函數(shù)是偶函數(shù);函數(shù)是奇函數(shù);函數(shù)是偶函數(shù).二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】∵扇形的圓心角為,半徑為,∴扇形的面積故答案為12、【解析】分子分母同除以,再利用基本不等式求解即可.【詳解】,,當(dāng)且僅當(dāng)時取等號,即函數(shù)的最大值為,故答案為:.13、(1)(2)【解析】(1)根據(jù)函數(shù)的最值求出,由相鄰兩條對稱軸之間的距離為,確定函數(shù)的周期,進而求出值;(2)由,求出,利用誘導(dǎo)公式結(jié)合的范圍求出,的值,即可求出結(jié)論.【小問1詳解】函數(shù)的最大值為5,所以A+1=5,即A=4∵函數(shù)圖象的相鄰兩條對稱軸之間的距離為,∴最小正周期T=π,∴ω=2故函數(shù)的解析式為.【小問2詳解】,則由,則,所以所以14、{|且}【解析】根據(jù)函數(shù),由求解.【詳解】因為函數(shù),所以,解得,所以函數(shù)的定義域是{|且},故答案為:{|且}15、【解析】令∴即函數(shù)的增區(qū)間為,又函數(shù)在上為單調(diào)遞增函數(shù)∴令得:,即,得到:,又∴實數(shù)的取值范圍是故答案為16、④⑤【解析】由向量中單位向量,向量相等、零向量和共線向量的定義進行判斷,即可得出答案.【詳解】對于①.單位向量方向不同時,不相等,故不正確.對于②.向量,滿足時,若方向不同時,不相等,故不正確.對于③.有向線段是有方向的線段,向量是既有大小、又有方向的量.向量可以用有向線段來表示,二者不等同,故不正確,對于④.根據(jù)零向量的定義,正確.對于⑤.根據(jù)共線向量是方向相同或相反的向量,也叫平行向量,故正確.故答案為:④⑤三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)在上單調(diào)遞增,證明見解析(2)【解析】(1)先利用函數(shù)的奇偶性求得,然后利用單調(diào)性的定義證得,從而證得在上遞增.(2)利用換元法化簡,對進行分類討論,結(jié)合二次函數(shù)的性質(zhì)求得在上的最小值.【小問1詳解】為偶函數(shù),,即,,則.所以.在為增函數(shù),證明如下:任取,,且,,,,,.即,在上單調(diào)遞增.【小問2詳解】,令,結(jié)合題意及(1)的結(jié)論可知.,.①當(dāng)時,;②當(dāng)時,;③當(dāng)時,.綜上,.18、(1)(2)【解析】(1)利用列舉法求解即可;(2)利用列舉法求解即可.【小問1詳解】由題意,設(shè)4名志愿者為甲,乙,丙,丁,4天一輪的值班安排所有可能的結(jié)果是:(甲,乙,丙,?。?,乙,丁,丙),(甲,丙,乙,?。?,(甲,丙,丁,乙),(甲,丁,乙,丙),(甲,丁,丙,乙),(乙,甲,丙,丁),(乙,甲丁,丙),(乙,丙,甲,丁),(乙,丙,丁,甲),(乙,丁,甲,丙),(乙,丁,丙,甲),(丙,甲,乙,?。ū?,甲,丁,乙),(丙,乙,甲,?。?,(丙,乙,丁,甲),(丙,丁,乙,甲),(丙,丁,甲,乙),(丁,甲,乙,丙),(丁,甲,丙,乙),(丁,乙,甲,丙),(丁,乙,丙,甲),(丁,丙,乙,甲),(丁,丙,甲,乙),共24個樣本點設(shè)甲乙相鄰為事件A,則事件A包含:(甲,乙,丙,丁),(甲,乙,丁,丙),(乙,甲,丙,?。?,(乙,甲,丁,丙),(丙,甲,乙,丁),(丙,乙,甲,?。?,(丙,丁,乙,甲),(丙,丁,甲,乙),(丁,甲,乙,丙),(丁,乙,甲,丙),(丁,丙,乙,甲),(丁,丙,甲,乙),共12個樣本點,故【小問2詳解】設(shè)甲或乙被安排在前兩天值班的為事件B則事件B包含:(甲,乙,丙,?。?,(甲,乙,丁,丙),(甲,丙,乙,?。?,丙,丁,乙),(甲,丁,乙,丙),(甲,丁,丙,乙),(乙,甲,丙,?。ㄒ?,甲,丁,丙),(乙,丙,甲,?。ㄒ?,丙,丁,甲),(乙,丁,甲,丙),(乙,丁,丙,甲),(丙,甲,乙,?。?,(丙,甲,丁,乙),(丙,乙,甲,?。?,(丙,乙,丁,甲),(丁,甲,乙,丙),(丁,甲,丙,乙),(丁,乙,甲,丙),(丁,乙,丙,甲),共20個樣本點,故.19、a=-1或a=2【解析】函數(shù)的對稱軸是,根據(jù)與區(qū)間的關(guān)系分類討論得最大值,由最大值求得【詳解】函數(shù)f(x)=-x2+2ax+1-a=-(x-a)2+a2-a+1,對稱軸方程為x=a(1)當(dāng)a<0時,f(x)max=f(0)=1-a,∴1-a=2,∴a=-1(2)當(dāng)0≤a≤1時,f(x)max=f(a)=a2-a+1,∴a2-a+1=2,即a2-a-1=0,∴a=(舍去)(3)當(dāng)a>1時,f(x)max=f(1)=a,∴a=2綜上可知,a=-1或a=2【點睛】關(guān)鍵點點睛:本題考查二次函數(shù)最值問題.二次函數(shù)在區(qū)間最值問題,一般需要分類討論,分類標(biāo)準(zhǔn)是對稱軸與區(qū)間的關(guān)系,如果,求最小值時分三類:,,,求最大值只要分兩類:和,類似分類20、(1)(2)當(dāng)時,;當(dāng)時,【解析】(1)根據(jù)三角函數(shù)的定義及誘導(dǎo)公式、同角三角函數(shù)基本關(guān)系化簡求解;(2)分,分別由定義求出三角函數(shù)值求解即可.【小問1詳解】由角的終邊過點,得,所以【小問2詳解】當(dāng)時,,所以當(dāng)時,,所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論