![江蘇省東臺市梁垛鎮(zhèn)中學2023-2024學年高一數(shù)學第一學期期末質量跟蹤監(jiān)視試題含解析_第1頁](http://file4.renrendoc.com/view11/M01/33/2F/wKhkGWV6NYKAAFvVAAI9u6mV-qo332.jpg)
![江蘇省東臺市梁垛鎮(zhèn)中學2023-2024學年高一數(shù)學第一學期期末質量跟蹤監(jiān)視試題含解析_第2頁](http://file4.renrendoc.com/view11/M01/33/2F/wKhkGWV6NYKAAFvVAAI9u6mV-qo3322.jpg)
![江蘇省東臺市梁垛鎮(zhèn)中學2023-2024學年高一數(shù)學第一學期期末質量跟蹤監(jiān)視試題含解析_第3頁](http://file4.renrendoc.com/view11/M01/33/2F/wKhkGWV6NYKAAFvVAAI9u6mV-qo3323.jpg)
![江蘇省東臺市梁垛鎮(zhèn)中學2023-2024學年高一數(shù)學第一學期期末質量跟蹤監(jiān)視試題含解析_第4頁](http://file4.renrendoc.com/view11/M01/33/2F/wKhkGWV6NYKAAFvVAAI9u6mV-qo3324.jpg)
![江蘇省東臺市梁垛鎮(zhèn)中學2023-2024學年高一數(shù)學第一學期期末質量跟蹤監(jiān)視試題含解析_第5頁](http://file4.renrendoc.com/view11/M01/33/2F/wKhkGWV6NYKAAFvVAAI9u6mV-qo3325.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省東臺市梁垛鎮(zhèn)中學2023-2024學年高一數(shù)學第一學期期末質量跟蹤監(jiān)視試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12小題,共60分)1.函數(shù)是奇函數(shù),則的值為()A.1 B.C.0 D.2.已知定義在上的奇函數(shù),滿足,當時,,則函數(shù)在區(qū)間上的所有零點之和為()A. B.C. D.3.已知三棱錐的三條棱,,長分別是3、4、5,三條棱,,兩兩垂直,且該棱錐4個頂點都在同一球面上,則這個球的表面積是A B.C. D.都不對4.歷史上數(shù)學計算方面的三大發(fā)明是阿拉伯數(shù)、十進制和對數(shù),其中對數(shù)的發(fā)明,大大縮短了計算時間,為人類研究科學和了解自然起了重大作用,對數(shù)運算對估算“天文數(shù)字”具有獨特優(yōu)勢.已知,,則的估算值為()A. B.C. D.5.數(shù)學家歐拉于1765年在他的著作《三角形的幾何學》中首次提出定理:三角形的外心(三邊中垂線的交點)、重心(三邊中線的交點)、垂心(三邊高的交點)依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線被后人稱之為三角形的歐拉線.已知的頂點為,,,則該三角形的歐拉線方程為().注:重心坐標公式為橫坐標:;縱坐標:A. B.C. D.6.已知函數(shù)是冪函數(shù),且其圖象與兩坐標軸都沒有交點,則實數(shù)A. B.2C.3 D.2或7.下列說法中,正確的是()A.銳角是第一象限的角 B.終邊相同的角必相等C.小于的角一定為銳角 D.第二象限的角必大于第一象限的角8.為了得到函數(shù)的圖像,可以將函數(shù)的圖像A.向右平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向左平移個單位長度9.已知三個頂點的坐標分別為,,,則外接圓的標準方程為()A. B.C. D.10.已知,,則()A. B.C. D.11.有一組實驗數(shù)據(jù)如下現(xiàn)準備用下列函數(shù)中的一個近似地表示這些數(shù)據(jù)滿足的規(guī)律,其中最佳的一個是()A. B.C. D.12.已知α,β是兩個不同的平面,m,n是兩條不同的直線,給出下列命題:①若m∥α,m∥β,則α∥β②若m?α,n?α,m∥β,n∥β,則α∥β;③m?α,n?β,m、n是異面直線,那么n與α相交;④若α∩β=m,n∥m,且n?α,n?β,則n∥α且n∥β其中正確的命題是()A.①② B.②③C.③④ D.④二、填空題(本大題共4小題,共20分)13.函數(shù)的定義域是______________.14.若三棱錐中,,其余各棱長均為5,則三棱錐內切球的表面積為_____15.已知函數(shù)在區(qū)間是單調遞增函數(shù),則實數(shù)的取值范圍是______16.設函數(shù),若關于x的方程有且僅有6個不同的實根.則實數(shù)a的取值范圍是_______.三、解答題(本大題共6小題,共70分)17.已知定義在上的奇函數(shù),當時,.(1)求函數(shù)在上的解析式;(2)在給出的直角坐標系中作出的圖像,并寫出函數(shù)的單調區(qū)間.18.已知角終邊經過點,求19.已知函數(shù).(1)求函數(shù)的定義域;(2)設,若函數(shù)在上有且僅有一個零點,求實數(shù)的取值范圍;(3)設,是否存在正實數(shù),使得函數(shù)在內的最大值為4?若存在,求出的值;若不存在,請說明理由.20.已知(1)當時,求的值;(2)若的最小值為,求實數(shù)的值;(3)是否存在這樣的實數(shù),使不等式對所有都成立.若存在,求出的取值范圍;若不存在,請說明理由21.已知函數(shù)是定義在R上的奇函數(shù),且當時,.(1)求函數(shù)的解析式;(2)若函數(shù)在區(qū)間上單調遞增,求實數(shù)的取值范圍.22.已知直線經過點和點.(Ⅰ)求直線的方程;(Ⅱ)若圓的圓心在直線上,并且與軸相切于點,求圓的方程
參考答案一、選擇題(本大題共12小題,共60分)1、D【解析】根據(jù)奇函數(shù)的定義可得,代入表達式利用對數(shù)的運算即可求解.【詳解】函數(shù)是奇函數(shù),則,即,從而可得,解得.當時,,即定義域為,所以時,是奇函數(shù)故選:D【點睛】本題考查了函數(shù)奇偶性的應用,需掌握函數(shù)奇偶性的定義,同時本題也考查了對數(shù)的運算,屬于基礎題.2、D【解析】推導出函數(shù)是周期為的周期函數(shù),且該函數(shù)的圖象關于直線對稱,令,可得出,轉化為函數(shù)與函數(shù)圖象交點橫坐標之和,數(shù)形結合可得出結果.【詳解】由于函數(shù)為上的奇函數(shù),則,,所以,函數(shù)是周期為的周期函數(shù),且該函數(shù)的圖象關于直線對稱,令,可得,則函數(shù)在區(qū)間上的零點之和為函數(shù)與函數(shù)在區(qū)間上圖象交點橫坐標之和,如下圖所示:由圖象可知,兩個函數(shù)的四個交點有兩對關于點對稱,因此,函數(shù)在區(qū)間上的所有零點之和為.故選:D.【點睛】本題考查函數(shù)零點之和,將問題轉化為兩個函數(shù)的交點,結合函數(shù)圖象的對稱性來求解是解答的關鍵,考查數(shù)形結合思想的應用,屬于中等題.3、B【解析】長方體的一個頂點上的三條棱分別為,且它的八個頂點都在同一個球面上,則長方體的對角線就是球的直徑,長方體的對角線為球的半徑為則這個球的表面積為故選點睛:本題考查的是球的體積和表面積以及球內接多面體的知識點.由題意長方體的外接球的直徑就是長方體的對角線,求出長方體的對角線,就是求出球的直徑,然后求出球的表面積即可4、C【解析】令,化為指數(shù)式即可得出.【詳解】令,則,∴,即的估算值為.故選:C.5、D【解析】由重心坐標公式得重心的坐標,根據(jù)垂直平分線的性質設出外心的坐標為,再由求出,然后求出歐拉線的斜率,點斜式就可求得其方程.【詳解】設的重點為,外心為,則由重心坐標公式得,并設的坐標為,解得,即歐拉方程為:,即:故選:D【點睛】本題考查直線方程,兩點之間的距離公式,三角形的重心、垂心、外心的性質,考查了理解辨析能力及運算能力.6、A【解析】根據(jù)冪函數(shù)的定義,求出m的值,代入判斷即可【詳解】函數(shù)是冪函數(shù),,解得:或,時,,其圖象與兩坐標軸有交點不合題意,時,,其圖象與兩坐標軸都沒有交點,符合題意,故,故選A【點睛】本題考查了冪函數(shù)的定義,考查常見函數(shù)的性質,是一道常規(guī)題7、A【解析】根據(jù)銳角的定義,可判定A正確;利用反例可分別判定B、C、D錯誤,即可求解.【詳解】對于A中,根據(jù)銳角的定義,可得銳角滿足是第一象限角,所以A正確;對于B中,例如:與的終邊相同,但,所以B不正確;對于C中,例如:滿足,但不是銳角,所以C不正確;對于D中,例如:為第一象限角,為第二象限角,此時,所以D不正確.故選:A.8、B【解析】因為,所以為了得到函數(shù)的圖像,可以將函數(shù)的圖像向右平移個單位長度即可.選B9、C【解析】先判斷出是直角三角形,直接求出圓心和半徑,即可求解.【詳解】因為三個頂點的坐標分別為,,,所以,所以,所以是直角三角形,所以的外接圓是以線段為直徑的圓,所以圓心坐標為,半徑故所求圓的標準方程為故選:C10、B【解析】應用同角關系可求得,再由余弦二倍角公式計算.【詳解】因,所以,所以,所以.故選:B.【點睛】本題考查同角間的三角函數(shù)關系,考查余弦的二倍角公式.求值時要注意角的取值范圍,以確定函數(shù)值的正負.11、C【解析】選代入四個選項的解析式中選取所得的最接近的解析式即可.【詳解】對于選項A:當時,,與相差較多,當時,,與相差較多,故選項A不正確;對于選項B:當時,,與相差較多,當時,,與相差較多,故選項B不正確;對于選項C:當時,,當時,,故選項C正確;對于選項D:當時,,與相差較多,當時,,與相差較多,故選項D不正確;故選:C.12、D【解析】利用平面與平面垂直和平行的判定和性質,直線與平面平行的判斷,對選項逐一判斷即可【詳解】①若m∥α,m∥β,則α∥β或α與β相交,錯誤命題;②若m?α,n?α,m∥β,n∥β,則α∥β或α與β相交.錯誤的命題;③m?α,n?β,m、n是異面直線,那么n與α相交,也可能n∥α,是錯誤命題;④若α∩β=m,n∥m,且n?α,n?β,則n∥α且n∥β.是正確的命題故選D【點睛】本題考查平面與平面的位置關系,直線與平面的位置關系,考查空間想象力,屬于中檔題.二、填空題(本大題共4小題,共20分)13、【解析】根據(jù)表達式有意義列條件,再求解條件得定義域.【詳解】由題知,,整理得解得.所以函數(shù)定義域是.故答案為:.14、【解析】由題意得,易知內切球球心到各面的距離相等,設為的中點,則在上且為的中點,在中,,所以三棱錐內切球的表面積為15、【解析】求出二次函數(shù)的對稱軸,即可得的單增區(qū)間,即可求解.【詳解】函數(shù)的對稱軸是,開口向上,若函數(shù)在區(qū)間單調遞增函數(shù),則,故答案為:.16、或或【解析】作出函數(shù)的圖象,設,分關于有兩個不同的實數(shù)根、,和兩相等實數(shù)根進行討論,當方程有兩個相等的實數(shù)根時,再檢驗,當方程有兩個不同的實數(shù)根、時,或,再由二次方程實數(shù)根的分布進行討論求解即可.【詳解】作出函數(shù)的簡圖如圖,令,要使關于的方程有且僅有個不同的實根,(1)當方程有兩個相等的實數(shù)根時,由,即,此時當,此時,此時由圖可知方程有4個實數(shù)根,此時不滿足.當,此時,此時由圖可知方程有6個實數(shù)根,此時滿足條件.(2)當方程有兩個不同的實數(shù)根、時,則或當時,由可得則的根為由圖可知當時,方程有2個實數(shù)根當時,方程有4個實數(shù)根,此時滿足條件.當時,設由,則,即綜上所述:滿足條件的實數(shù)a的取值范圍是或或故答案為:或或【點睛】關鍵點睛:本題考查利用復合型二次函數(shù)的零點個數(shù)求參數(shù),考查數(shù)形結合思想的應用,解答本題的關鍵由條件結合函數(shù)的圖象,分析方程的根情況及其范圍,再由二次方程實數(shù)根的分布解決問題,屬于難題.三、解答題(本大題共6小題,共70分)17、(1)(2)圖像答案見解析,單調遞增區(qū)間為,單調遞減區(qū)間為【解析】(1)由函數(shù)的奇偶性的定義和已知解析式,計算時的解析式,可得所求的解析式;(2)由分段函數(shù)的圖像畫法,可得所求圖像,結合的圖像,可得的單調區(qū)間【小問1詳解】設,則,所以,又為奇函數(shù),所以,又為定義在上的奇函數(shù),所以,所以【小問2詳解】作出函數(shù)的圖像,如圖所示:函數(shù)的單調遞增區(qū)間為,單調遞減區(qū)間為.18、7【解析】要求值的三角函數(shù)式可化簡為,再利用任意角三角函數(shù)的定義求出,代入即得所求【詳解】因為角終邊經過點,則又19、(1);(2);(3)存在,.【解析】(1)根據(jù)對數(shù)函數(shù)的定義域列不等式求解即可.(2)由函數(shù)的單調性和零點存在定理,列不等式求解即可.(3)由對勾函數(shù)的性質可得函數(shù)的單調區(qū)間,利用分類討論的思想討論定義域與單調區(qū)間的關系,再利用函數(shù)的最值存在性問題求出實數(shù)的值.【詳解】(1)由題意,函數(shù)有意義,則滿足,解得,即函數(shù)的定義域為.(2)由,且,可得,且為單調遞增連續(xù)函數(shù),又函數(shù)在上有且僅有一個零點,所以,即,解得,所以實數(shù)的取值范圍是.(3)由,設,則,易證在為單調減函數(shù),在為單調增函數(shù),當時,函數(shù)在上為增函數(shù),所以最大值為,解得,不符合題意,舍去;當時,函數(shù)在上為減函數(shù),所以最大值為,解得,不符合題意,舍去;當時,函數(shù)在上減函數(shù),在上為增函數(shù),所以最大值為或,解得,符合題意,綜上可得,存在使得函數(shù)的最大值為4.【點睛】本題考查了對數(shù)函數(shù)的定義域問題、零點存在定理、對勾函數(shù)的應用,考查了理解辨析的能力、數(shù)學運算能力、分類討論思想和轉化的數(shù)學思想,屬于一般題目.20、(1)(2)或(3)存在,的取值范圍為【解析】(1)先化簡,再代入進行求解;(2)換元法,化為二次函數(shù),結合對稱軸分類討論,求出最小值時m的值;(3)換元法,參變分離,轉化為在恒成立,根據(jù)單調性求出取得最大值,進而求出的取值范圍.【小問1詳解】,當時,【小問2詳解】設,則,,,其對稱軸為,的最小值為,則;的最小值為;則綜上,或【小問3詳解】由,對所有都成立.設,則,恒成立,在恒成立,當時,遞減,則在遞增,時取得最大值得,∴所以存在符合條件的實數(shù),且m的取值范圍為21、(1);(2).【解析】(1)設,計算,再根據(jù)奇函數(shù)的性質,得,,即可得函數(shù)在R上的解析式;(2)作出函數(shù)的圖像,若在區(qū)間上單調遞增,結合函數(shù)圖像,列關于的不等式組求解.詳解】(1)設,則,所以又為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 充電樁采購合同
- 企業(yè)正式聘用合同模板
- 2024年智能穿戴設備技術研發(fā)合同
- 破火器和噴灑系統(tǒng)的應用
- 中石化成品油購銷合同
- 房屋承租轉租合同書
- 有關設備采購合同范本
- 工程擔保合同的反擔保
- 新裝修插座采購合同范本年
- 南方公司電網(wǎng)基建項目危險性較大的分部分項工程安全管理工作指引
- 挖掘機售后保養(yǎng)及維修服務協(xié)議(2024版)
- 公司組織架構與管理體系制度
- 2023-2024年度數(shù)字經濟與驅動發(fā)展公需科目答案(第5套)
- 職業(yè)分類表格
- 廣東省深圳高級中學2023-2024學年八年級下學期期中考試物理試卷
- 電網(wǎng)建設項目施工項目部環(huán)境保護和水土保持標準化管理手冊(變電工程分冊)
- 口腔門診部設置可行性研究報告
- 體檢科運營可行性報告
- 北京市豐臺區(qū)市級名校2024屆數(shù)學高一第二學期期末檢測模擬試題含解析
- 設立項目管理公司組建方案
- 薪酬戰(zhàn)略與實踐
評論
0/150
提交評論