版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江西名校2024屆數(shù)學(xué)高一上期末統(tǒng)考模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.直線與圓相切,則的值為()A. B.C. D.2.下列說法正確的是A.截距相等的直線都可以用方程表示B.方程不能表示平行軸的直線C.經(jīng)過點,傾斜角為直線方程為D.經(jīng)過兩點,的直線方程為3.已知角頂點與原點重合,始邊與軸的正半軸重合,點在角的終邊上,則()A. B.C. D.4.下列各對角中,終邊相同的是()A.和 B.和C.和 D.和5.要得到函數(shù)的圖象,只需將函數(shù)的圖象向()平移()個單位長度A.左 B.右C.左 D.右6.已知函數(shù)是定義域為R的奇函數(shù),且,當時,,則等于()A.-2 B.2C. D.-7.已知函數(shù)f(x)=3x???????A. B.C. D.8.設(shè)集合A={3,4,5},B={3,6},P={x|xA},Q={x|xB},則PQ=A.{3}B.{3,4,5,6}C.{{3}}D.{{3},}9.如圖,在下列四個正方體中,、為正方體兩個頂點,、、為所在棱的中點,則在這四個正方體中,直線與平面不平行的是()A. B.C. D.10.冪函數(shù)f(x)的圖象過點(4,2),那么f()的值為()A. B.64C.2 D.二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11.已知,均為正數(shù),且,則的最大值為____,的最小值為____.12.終邊上一點坐標為,的終邊逆時針旋轉(zhuǎn)與的終邊重合,則______.13.函數(shù)的部分圖象如圖所示.則函數(shù)的解析式為______14.函數(shù)恒過定點為__________15.函數(shù)的值域是____________,單調(diào)遞增區(qū)間是____________.三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16.已知θ是第二象限角,,求:(1);(2)17.已知函數(shù)是偶函數(shù).(1)求實數(shù)的值;(2)當時,函數(shù)存在零點,求實數(shù)的取值范圍;(3)設(shè)函數(shù),若函數(shù)與的圖像只有一個公共點,求實數(shù)的取值范圍.18.已知函數(shù).(1)判斷函數(shù)在上的單調(diào)性,并用定義證明;(2)記函數(shù),證明:函數(shù)在上有唯一零點.19.如圖,是平面四邊形的對角線,,,且.現(xiàn)在沿所在的直線把折起來,使平面平面,如圖.(1)求證:平面;(2)求點到平面的距離.20.已知,是夾角為的兩個單位向量,且向量,求:,,;向量與夾角的余弦值21.已知函數(shù)最小正周期為.(1)求的值:(2)將函數(shù)的圖象先向左平移個單位,然后向上平移1個單位,得到函數(shù),若在上至少含有4個零點,求b的最小值.
參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、D【解析】由圓心到直線的距離等于半徑可得【詳解】由題意圓標準方程為,圓心坐標為,半徑為1,所以,解得故選:D2、D【解析】A錯誤,比如過原點的直線,橫縱截距均為0,這時就不能有選項中的式子表示;B當m=0時,表示的就是和y軸平行的直線,故選項不對C不正確,當直線的傾斜角為90度時,正切值無意義,因此不能表示.故不正確D根據(jù)直線的兩點式得到斜率為,再代入一個點得到方程為:故答案為D3、D【解析】先根據(jù)三角函數(shù)的定義求出,然后采用弦化切,代入計算即可【詳解】因為點在角的終邊上,所以故選:D4、C【解析】利用終邊相同的角的定義,即可得出結(jié)論【詳解】若終邊相同,則兩角差,A.,故A選項錯誤;B.,故B選項錯誤;C.,故C選項正確;D.,故D選項錯誤.故選:C.【點睛】本題考查終邊相同的角的概念,屬于基礎(chǔ)題.5、C【解析】因為,由此可得結(jié)果.【詳解】因為,所以其圖象可由向左平移個單位長度得到.故選:C.6、B【解析】根據(jù)奇函數(shù)性質(zhì)和條件,求得函數(shù)的周期為8,再化簡即可.【詳解】函數(shù)是定義域為R的奇函數(shù),則有:又,則則有:可得:故,即的周期為則有:故選:B7、B【解析】根據(jù)對數(shù)的運算性質(zhì)求出,再根據(jù)指數(shù)冪的運算求出即可.【詳解】由題意知,,則,所以.故選:B8、D【解析】集合P={x|x?A}表示集合A的子集構(gòu)成的集合,故P={?,{3},{4},{5},{3,4},{3,5},{4,5},{3,4,5}},同樣Q={?,{3},{6},{3,6}}.∴P∩Q={{3},Φ};故選D.9、D【解析】利用線面平行判定定理可判斷A、B、C選項的正誤;利用線面平行的性質(zhì)定理可判斷D選項的正誤.【詳解】對于A選項,如下圖所示,連接,在正方體中,且,所以,四邊形為平行四邊形,則,、分別為、的中點,則,,平面,平面,平面;對于B選項,連接,如下圖所示:在正方體中,且,所以,四邊形為平行四邊形,則,、分別為、的中點,則,,平面,平面,平面;對于C選項,連接,如下圖所示:在正方體中,且,所以,四邊形為平行四邊形,則,、分別為、中點,則,,平面,平面,平面;對于D選項,如下圖所示,連接交于點,連接,連接交于點,若平面,平面,平面平面,則,則,由于四邊形為正方形,對角線交于點,則為的中點,、分別為、的中點,則,且,則,,則,又,則,所以,與平面不平行;故選:D.【點睛】判斷或證明線面平行的常用方法:(1)利用線面平行的定義,一般用反證法;(2)利用線面平行的判定定理(,,),其關(guān)鍵是在平面內(nèi)找(或作)一條直線與已知直線平行,證明時注意用符號語言的敘述;(3)利用面面平行的性質(zhì)定理(,).10、A【解析】設(shè)出冪函數(shù),求出冪函數(shù)代入即可求解.【詳解】設(shè)冪函數(shù)為,且圖象過點(4,2),解得,所以,,故選:A【點睛】本題考查冪函數(shù),需掌握冪函數(shù)的定義,屬于基礎(chǔ)題.二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11、①.②.##【解析】利用基本不等式的性質(zhì)即可求出最大值,再通過消元轉(zhuǎn)化為二次函數(shù)求最值即可.【詳解】解:由題意,得4=2a+b≥2,當且僅當2a=b,即a=1,b=2時等號成立,所以0<ab≤2,所以ab的最大值為2,a2+b2=a2+(4-2a)2=5a2-16a+16=5(a-)2+≥,當a=,b=時取等號.故答案為:,.12、【解析】由題知,進而根據(jù)計算即可.【詳解】解:因為終邊上一點坐標為,所以,因為的終邊逆時針旋轉(zhuǎn)與的終邊重合,所以故答案為:13、【解析】由圖象可得出函數(shù)的最小正周期,可求得的值,再由結(jié)合的取值范圍可求得的值,即可得出函數(shù)的解析式.【詳解】函數(shù)的最小正周期為,則,則,因為且函數(shù)在處附近單調(diào)遞減,則,得,因,所以.所以故答案為:.14、【解析】當時,,故恒過點睛:函數(shù)圖象過定點問題,主要有指數(shù)函數(shù)過定點,對數(shù)函數(shù)過定點,冪函數(shù)過點,注意整體思維,整體賦值求解15、①.②.【解析】先求二次函數(shù)值域,再根據(jù)指數(shù)函數(shù)單調(diào)性求函數(shù)值域;根據(jù)二次函數(shù)單調(diào)性與指數(shù)函數(shù)單調(diào)性以及復(fù)合函數(shù)單調(diào)性法則求函數(shù)增區(qū)間.【詳解】因為,所以,即函數(shù)的值域是因為單調(diào)遞減,在(1,+)上單調(diào)遞減,因此函數(shù)的單調(diào)遞增區(qū)間是(1,+).【點睛】本題考查復(fù)合函數(shù)值域與單調(diào)性,考查基本分析求解能力.三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16、(1);(2).【解析】(1)由,求得,結(jié)合三角函數(shù)基本關(guān)系式,即可求解;(2)由(1)知,根據(jù)三角函數(shù)的基本關(guān)系式和誘導(dǎo)公式,化簡為齊次式,即可求解.【詳解】(1)由題意,角是第二象限角,且,可得,可得,所以,所以,因為是第二象限角,可得.(2)由(1)知,又由.17、(1)(2)(3)【解析】(1)函數(shù)是偶函數(shù),所以得出值檢驗即可;(2),因為時,存在零點,即關(guān)于的方程有解,求出的值域即可;(3)因為函數(shù)與的圖像只有一個公共點,所以關(guān)于的方程有且只有一個解,所以,換元,研究二次函數(shù)圖象及性質(zhì)即可得出實數(shù)的取值范圍.【小問1詳解】解:因為是上偶函數(shù),所以,即解得,此時,則是偶函數(shù),滿足題意,所以.【小問2詳解】解:因為,所以因為時,存在零點,即關(guān)于的方程有解,令,則因為,所以,所以,所以,實數(shù)的取值范圍是.【小問3詳解】因為函數(shù)與的圖像只有一個公共點,所以關(guān)于的方程有且只有一個解,所以令,得…(*),記,①當時,函數(shù)圖像開口向上,又因為圖像恒過點,方程(*)有一正一負兩實根,所以符合題意;②當時,因為,所以只需,解得,方程(*)有兩個相等的正實根,所以滿足題意,綜上,的取值范圍是.18、(1)在上單調(diào)遞增,證明見解析;(2)證明見解析.【解析】(1)根據(jù)題意,結(jié)合作差法,即可求證;(2)根據(jù)題意,結(jié)合單調(diào)性與零點存在性定理,即可求證.【小問1詳解】函數(shù)在上單調(diào)遞增.證明:任取,則,因為,所以,所以,即,因此,故函數(shù)在上單調(diào)遞增.【小問2詳解】證明:因為,,所以由函數(shù)零點存在定理可知,函數(shù)在上有零點,因為和都在上單調(diào)遞增,所以函數(shù)在上單調(diào)遞增,故函數(shù)在上有唯一零點.19、(1)見解析;(2).【解析】(1)由平面平面,平面平面,且平面,且,根據(jù)線面垂直的判定定理可得平面;(2)取的中點,連.由,可得,又平面,所以,又,所以平面,因此就是點到平面的距離,在中,,,所以.試題解析:(1)證明:因為平面平面平面平面,平面,且,所以平面(2)取的中點,連.因為,所以,又平面,所以,又,所以平面,所以就是點到平面的距離,在中,,,所以.所以是點到平面的距離是.【方法點晴】本題主要考查、線面垂直的判定定理及面面垂直的性質(zhì)定理,屬于中檔題.解答空間幾何體中垂直關(guān)系時,一般要根據(jù)已知條件把空間中的線線、線面、面面之間垂直關(guān)系進行轉(zhuǎn)化,轉(zhuǎn)化時要正確運用有關(guān)的定理,找出足夠的條件進行推理;證明直線和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推論;(3)利用面面平行的性質(zhì);(4)利用面面垂直的性質(zhì),當兩個平面垂直時,在一個平面內(nèi)垂直于交線的直線垂直于另一個平面.20、(1);(2)【解析】根據(jù),是夾角為的兩個單位向量即可求出,然后利用向量的模的公式和數(shù)量積公式即可求得結(jié)果;根據(jù)即可求出向量夾角的余弦值【詳解】是夾角為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度養(yǎng)殖場廢棄物資源化利用技術(shù)承包合同范本4篇
- 2022版義務(wù)教育階段英語課程標準模擬測試卷
- 2025年度整棟醫(yī)療設(shè)施出租經(jīng)營合同4篇
- 2025年度存量房交易資金監(jiān)管服務(wù)合同范本2篇
- 2024智能健康監(jiān)測設(shè)備研發(fā)與生產(chǎn)合同
- 2025別墅庭院園藝景觀植物租賃與養(yǎng)護合同3篇
- 2025年度新能源汽車動力電池回收利用技術(shù)合作合同范本3篇
- 2024美容院員工勞動合同及保密協(xié)議
- 2025年度醫(yī)院兒科病房改造與承包運營協(xié)議4篇
- 2025年度床上用品行業(yè)環(huán)保公益活動合作合同3篇
- 教師培訓(xùn)課件信息技術(shù)與數(shù)字素養(yǎng)教育
- 外觀專利授權(quán)協(xié)議書
- 全套消防管理記錄本
- 項目管理實施規(guī)劃-無錫萬象城
- 浙大一院之江院區(qū)就診指南
- 離婚協(xié)議書電子版下載
- 完整版供應(yīng)商質(zhì)量審核檢查評分表(供應(yīng)商審核表)
- 項目日程表模板
- 質(zhì)量評估報告(光伏)
- 農(nóng)村個人房屋抵押借款合同
- 公衛(wèi)執(zhí)業(yè)醫(yī)師述職報告
評論
0/150
提交評論