《直線與圓的位置關系》教學案例_第1頁
《直線與圓的位置關系》教學案例_第2頁
《直線與圓的位置關系》教學案例_第3頁
《直線與圓的位置關系》教學案例_第4頁
《直線與圓的位置關系》教學案例_第5頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

《直線與圓的位置關系》教學案例會同縣沙溪中學趙庚一、教材分析1、教材的地位和作用。《圓》的教學在初中數(shù)學中占有重要的地位,其中《直線和圓的位置關系》在我們的日常生活中應用比較廣泛。這節(jié)課是在學習了《點和圓的位置關系》的基礎上進行的,同時又為后面的《圓與圓的位置關系》作鋪墊,它是學生證明切線的重要的理論依據(jù)。所以它在教材中處于非常重要的位置。2、教學目標:

根據(jù)學生的認知基礎及新課標要求確定本課的教學目標為:知識目標:a、知道直線和圓相交、相切、相離的定義。b、根據(jù)定義來判斷直線和圓的位置關系,會根據(jù)直線和圓相切的定義畫出已知圓的切線。c、根據(jù)圓心到直線的距離與圓的半徑之間的數(shù)量關系揭示直線和圓的位置。能力目標:讓學生通過觀察、分析、對比,能找出圓心到直線的距離和圓的半徑之間的數(shù)量關系,揭示直線和圓的位置關系。在探究“關系”的過程中,培養(yǎng)學生觀察﹑概括與抽象思維的能力。此外,通過對探究過程的反思,進一步強化對分類和歸納的思想的認識。情感目標:

通過實際生活中的例子,讓學生感受到“數(shù)學來源于生活,又服務于生活”的數(shù)學理念,增強學生學好數(shù)學的信心。另外,通過直線與圓的相對運動,培養(yǎng)學生運動變化的辨證唯物主義觀點。

3.教材的重點難點

教學重點:直線和圓的三種位置關系。教學難點:直線和圓的三種位置關系的性質(zhì)與判定的應用。二、教學方法:教法:結合我校的“以學生自學為主,教師輔導為輔的教學模式”,采用“小組合作、問題探究”的方法。以“發(fā)現(xiàn)---探究---提升---鞏固”四步教學為主線,培養(yǎng)學生自主學習、敢于提問的良好習慣,互助協(xié)作的精神和用數(shù)學語言歸納問題的能力。學法:本節(jié)課引導學生用類比的方法來研究直線與圓的位置關系,注重調(diào)動學生積極思考、主動探索,盡可能地增加學生參與教學活動的時間和空間。充分發(fā)揮學生的主觀能動性,體現(xiàn)出學生是學習的主體。三、教學過程【情景導入】師:通過上節(jié)課的學習,我們知道了點與圓的位置關系,哪位同學給大家敘述一下點與圓的不同位置關系及各種位置關系的數(shù)量表示?生:有三種:點在圓外d﹥r;點在圓上d=r;點在圓內(nèi)d﹤r.師:非常好!請坐。今天,我們進一步探究“直線和圓的位置關系”(板書課題---3.2直線和圓的位置關系),老師給大家收集了幾幅美麗的圖片,請大家仔細觀察,根據(jù)剛才的知識回顧,你能有什么發(fā)現(xiàn)?(多媒體演示在音樂背景下的“日出”、“路上行駛的自行車”、“移動的圓環(huán)”等美麗圖片,讓學生感知直線與圓的不同位置關系,感受“數(shù)學產(chǎn)生于生活,與生活息息相關”的道理,激發(fā)學生的求知欲望)。師:欣賞完了。請同學們以小組為單位說說自己的發(fā)現(xiàn)。2分鐘后,請小組主講人展示你們的成果。生:我們發(fā)現(xiàn),直線和圓也有三種不同的位置關系。師:其他小組還有不同的結論嗎?生:…師:我們現(xiàn)在在來欣賞一句詩:大漠孤煙直,長河落日圓,大家說說看你想到了一幅什么樣的畫面?請你把它畫出來,小組間交流一下。(設計此問題,可以讓學生體驗我們中國的詩情畫意的傳統(tǒng)文化,同時可以發(fā)揮學生的想象力,引出圓與直線的關系.)生:…師:下面,老師給大家十分鐘的時間,自學課本72頁內(nèi)容。寫出學習小結(“我的收獲”和“我的疑惑”)。十分鐘后,本組同學互相交流自己的學習成果,組長同學負責解決同學們的疑惑,不能解答的問題,請記錄員做好記錄。(學生自學,教師巡視并參與各小組的活動。注意關注學習困難的同學。)師:請有問題的小組說出你們的疑惑(沒有解決的問題)?生1:當直線與圓相切時,怎樣畫出圓的切線?師:哪個小組能幫助他們解決這個問題呢?生2:我認為用直尺緊緊靠在圓的邊緣,畫一條直線就可以了(一邊說,一邊在黑板上板書)。師:說得基本正確。對,我們現(xiàn)在只能靠眼睛觀察,畫圓的切線時,使直尺在紙上移動,當它與圓只有一個交點時,畫出的直線就可以近似地看作圓的切線。如,課本72頁的圖3-31。下一節(jié)課,我們將學習切線的畫法。還有其他問題嗎?生:沒有了?!拘轮獞谩繋煟赫垺按骸薄跋摹敝牭耐瑢W互相“點兵”,完成下列表格的第一行、第二行內(nèi)容,“秋”“冬”之隊的同學互相“點兵”,完成下列表格的第三行、第四行內(nèi)容。其他同學把答案填在《學案》上。直線與圓的位置關系相交相切相離公共點的個數(shù)d與r的關系公共點的名稱直線的名稱【經(jīng)典例題】已知圓O的半徑r=3cm,圓心O到直線l的距離d=2cm,判斷直線l與圓O的位置關系。分析:利用直線與圓的位置關系中的幾個關系式,學生可以很快的解答出本題,要求學生分組完成練習,學有所余的同學幫助沒有掌握的同學。(由學生完成后,請各個小組自行在小組內(nèi)完成匯報,然后教師請三個同學上臺板演。)變式:1、已知圓O的直徑是18cm,圓心O到直線l的距離為9cm,判斷直線l與園O的位置關系。2、已知圓O與直線l相切,圓心O到直線l的距離為8cm,求圓O的半徑?!井斕糜柧殹浚ǚ謱佑柧?,要求所有學生完成練習中的1、2、3小題,但是4小題只要求基礎比較好的同學完成。)1、已知圓的直徑為16cm,如果一條直線和圓心的距離分別等于(1)7cm(2)8cm(3)9cm,那么這條直線和這個圓的位置關系分別為

。2、已知圓中最長的弦長為10,如果直線與該圓相交且直線與圓心的距離為d,則d的取值范圍是

。3、已知AB為同心圓中大圓的弦,且AB=8,大圓的半徑為5,若AB與小圓相切,則小圓的半徑為

;若AB與小圓有兩個交點。則小圓半徑r的取值范圍為

。4、已知:Rt△ABC的斜邊AB=10cm,AC=6cm.(1)以點C為圓心,當半徑為多少時,AB與⊙C相切?(2)以點C為圓心,分別以5cm和4cm為半徑作兩個圓,這兩個圓與分別有怎樣的位置關系?課后反思:這節(jié)課下來,感覺學生對知識掌握較好,能夠達到新課標的要求、實現(xiàn)教學目標。整個課堂氣氛能夠活躍,孩子們競爭意識﹑積極參與意識比以前又有所提高了。整堂課學生都參與到了學習的過程,從發(fā)現(xiàn)問題到提出問題、解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論