版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
考向08函數(shù)的奇偶性與周期性1.(2021·全國高考真題(理))設(shè)函數(shù)SKIPIF1<0的定義域?yàn)镽,SKIPIF1<0為奇函數(shù),SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】通過SKIPIF1<0是奇函數(shù)和SKIPIF1<0是偶函數(shù)條件,可以確定出函數(shù)解析式SKIPIF1<0,進(jìn)而利用定義或周期性結(jié)論,即可得到答案.【詳解】因?yàn)镾KIPIF1<0是奇函數(shù),所以SKIPIF1<0①;因?yàn)镾KIPIF1<0是偶函數(shù),所以SKIPIF1<0②.令SKIPIF1<0,由①得:SKIPIF1<0,由②得:SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,由①得:SKIPIF1<0,所以SKIPIF1<0.思路一:從定義入手.SKIPIF1<0SKIPIF1<0SKIPIF1<0所以SKIPIF1<0.思路二:從周期性入手由兩個對稱性可知,函數(shù)SKIPIF1<0的周期SKIPIF1<0.所以SKIPIF1<0.故選:D.【點(diǎn)睛】在解決函數(shù)性質(zhì)類問題的時(shí)候,我們通??梢越柚恍┒壗Y(jié)論,求出其周期性進(jìn)而達(dá)到簡便計(jì)算的效果.2.(2021·全國高考真題(理))設(shè)函數(shù)SKIPIF1<0,則下列函數(shù)中為奇函數(shù)的是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】分別求出選項(xiàng)的函數(shù)解析式,再利用奇函數(shù)的定義即可.【詳解】由題意可得SKIPIF1<0,對于A,SKIPIF1<0不是奇函數(shù);對于B,SKIPIF1<0是奇函數(shù);對于C,SKIPIF1<0,定義域不關(guān)于原點(diǎn)對稱,不是奇函數(shù);對于D,SKIPIF1<0,定義域不關(guān)于原點(diǎn)對稱,不是奇函數(shù).故選:B【點(diǎn)睛】本題主要考查奇函數(shù)定義,考查學(xué)生對概念的理解,是一道容易題.1.判斷函數(shù)奇偶性的常用方法(1)定義法:確定函數(shù)的奇偶性時(shí),必須先判定函數(shù)定義域是否關(guān)于原點(diǎn)對稱.若對稱,再化簡解析式后驗(yàn)證f(-x)=±f(x)或其等價(jià)形式f(-x)±f(x)=0是否成立.(2)圖象法:f(x)的圖像關(guān)于原點(diǎn)對稱,f(x)為奇函數(shù);f(x)的圖像關(guān)于y軸對稱,f(x)為偶函數(shù)。(3)性質(zhì)法:設(shè)f(x),g(x)的定義域分別是D1,D2,那么在它們的公共定義域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.2.與函數(shù)奇偶性有關(guān)的問題及解題策略(1)求函數(shù)的值:利用奇偶性將待求值轉(zhuǎn)化為已知區(qū)間上的函數(shù)值求解.(2)求函數(shù)解析式:先將待求區(qū)間上的自變量轉(zhuǎn)化到已知區(qū)間上,再利用奇偶性求出,或充分利用奇偶性構(gòu)造關(guān)于f(x)的方程(組),從而得到f(x)的解析式.(3)求解析式中的參數(shù)值:在定義域關(guān)于原點(diǎn)對稱的前提下,利用f(x)為奇函數(shù)?f(-x)=-f(x),f(x)為偶函數(shù)?f(x)=f(-x),列式求解,也可利用特殊值法求解.對于在x=0處有定義的奇函數(shù)f(x),可考慮列等式f(0)=0求解.4.求解與函數(shù)的周期性有關(guān)的問題,應(yīng)根據(jù)題目特征及周期定義,求出函數(shù)的周期.5.周期函數(shù)的圖象具有周期性,如果發(fā)現(xiàn)一個函數(shù)的圖象具有兩個對稱性(注意:對稱中心在平行于x軸的直線上,對稱軸平行于y軸),那么這個函數(shù)一定具有周期性.6.函數(shù)性質(zhì)綜合應(yīng)用問題的常見類型及解題策略(1)函數(shù)單調(diào)性與奇偶性的綜合.注意函數(shù)單調(diào)性及奇偶性的定義,以及奇、偶函數(shù)圖象的對稱性。(2)周期性與奇偶性的綜合.此類問題多考查求值問題,常利用奇偶性及周期性進(jìn)行變換,將所求函數(shù)值的自變量轉(zhuǎn)化到已知解析式的函數(shù)定義域內(nèi)求解。(3)單調(diào)性、奇偶性與周期性的綜合.解決此類問題通常先利用周期性轉(zhuǎn)化自變量所在的區(qū)間,然后利用奇偶性和單調(diào)性求解。(4)應(yīng)用奇函數(shù)圖象關(guān)于原點(diǎn)對稱,偶函數(shù)圖象關(guān)于y軸對稱。1.函數(shù)的奇偶性奇偶性定義圖象特點(diǎn)偶函數(shù)一般地,如果對于函數(shù)f(x)的定義域內(nèi)任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)關(guān)于y軸對稱奇函數(shù)一般地,如果對于函數(shù)f(x)的定義域內(nèi)任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)關(guān)于原點(diǎn)對稱2.周期性(1)周期函數(shù):對于函數(shù)y=f(x),如果存在一個非零常數(shù)T,使得當(dāng)x取定義域內(nèi)的任何值時(shí),都有f(x+T)=f(x),那么就稱函數(shù)y=f(x)為周期函數(shù),非零常數(shù)T為這個函數(shù)的周期.(2)最小正周期:如果在周期函數(shù)f(x)的所有周期中存在一個最小的正數(shù),那么這個最小正數(shù)就叫做f(x)的最小正周期.【知識拓展】1.(1)如果一個奇函數(shù)f(x)在原點(diǎn)處有定義,即f(0)有意義,那么一定有f(0)=0.(2)如果函數(shù)f(x)是偶函數(shù),那么f(x)=f(|x|).2.奇函數(shù)在兩個對稱的區(qū)間上具有相同的單調(diào)性;偶函數(shù)在兩個對稱的區(qū)間上具有相反的單調(diào)性.3.函數(shù)周期性常用結(jié)論對f(x)定義域內(nèi)任一自變量的值x:(1)若f(x+a)=-f(x),則T=2a(a>0).(2)若f(x+a)=eq\f(1,f(x)),則T=2a(a>0).(3)若f(x+a)=-eq\f(1,f(x)),則T=2a(a>0).4.對稱性的三個常用結(jié)論(1)若函數(shù)y=f(x+a)是偶函數(shù),則函數(shù)y=f(x)的圖象關(guān)于直線x=a對稱.(2)若對于R上的任意x都有f(2a-x)=f(x)或f(-x)=f(2a+x),則y=f(x)的圖象關(guān)于直線x=a對稱.(3)若函數(shù)y=f(x+b)是奇函數(shù),則函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(b,0)中心對稱.5.兩個奇偶函數(shù)四則運(yùn)算的性質(zhì)EQ\o\ac(○,1)兩個奇函數(shù)的和仍為奇函數(shù);EQ\o\ac(○,2)兩個偶函數(shù)的和仍為偶函數(shù);EQ\o\ac(○,3)兩個奇函數(shù)的積是偶函數(shù);EQ\o\ac(○,4)兩個偶函數(shù)的積是偶函數(shù);EQ\o\ac(○,5)一個奇函數(shù)與一個偶函數(shù)的積是奇函數(shù)。1.(2021·北京高三其他模擬)下列函數(shù)中,既是奇函數(shù),又滿足值域?yàn)镾KIPIF1<0的是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2021·黑龍江佳木斯市·佳木斯一中高三三模(理))已知SKIPIF1<0為奇函數(shù)且對任意SKIPIF1<0,SKIPIF1<0,若當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.0 C.1 D.23.(2021·安徽高三其他模擬(文))偶函數(shù)SKIPIF1<0滿足SKIPIF1<0,且在SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.SKIPIF1<04.(2021·沈陽市·遼寧實(shí)驗(yàn)中學(xué)高三二模)已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且滿足SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0().A.2021 B.1 C.0 D.SKIPIF1<01.(2021·天水市第一中學(xué)高三其他模擬(文))關(guān)于函數(shù)SKIPIF1<0有下列四個結(jié)論:①SKIPIF1<0在定義域上是偶函數(shù);②SKIPIF1<0在SKIPIF1<0上是減函數(shù);③SKIPIF1<0在SKIPIF1<0上的最小值是SKIPIF1<0;④SKIPIF1<0在SKIPIF1<0上有兩個零點(diǎn).其中結(jié)論正確的編號是().A.①② B.②④ C.②③ D.③④2.(2021·遼寧高三其他模擬)設(shè)函數(shù)SKIPIF1<0,則函數(shù)的圖象可能是()A. B. C. D.3.(2021·安徽池州市·池州一中高三其他模擬(理))若定義在SKIPIF1<0上的奇函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,則不等式SKIPIF1<0的解集為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<04.(2021·珠海市第二中學(xué)高三其他模擬)設(shè)SKIPIF1<0是奇函數(shù),若函數(shù)SKIPIF1<0圖象與函數(shù)SKIPIF1<0圖象關(guān)于直線SKIPIF1<0對稱,則SKIPIF1<0的值域?yàn)椋ǎ〢.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<05.(2021·重慶一中高三其他模擬)已知SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),那么SKIPIF1<0的最大值是()A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2021·山東高三其他模擬)已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),滿足SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則函數(shù)SKIPIF1<0的零點(diǎn)個數(shù)是()A.2 B.3 C.4 D.57.(2021·黑龍江哈爾濱市·哈爾濱三中高三其他模擬(理))設(shè)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),且SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,若在區(qū)間SKIPIF1<0內(nèi)關(guān)于SKIPIF1<0的方程SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)有且只有5個不同的實(shí)數(shù)根,則實(shí)數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<08.(2021·湖南高三其他模擬)(多選題)已知定義域?yàn)镾KIPIF1<0的函數(shù)SKIPIF1<0滿足SKIPIF1<0是奇函數(shù),SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則()A.函數(shù)SKIPIF1<0不是偶函數(shù)B.函數(shù)SKIPIF1<0的最小正周期為4C.函數(shù)SKIPIF1<0在SKIPIF1<0上有3個零點(diǎn)D.SKIPIF1<09.(2019·吉林高三其他模擬(文))已知奇函數(shù)f(x)滿足?x∈R,f(1+x)=f(1﹣x)恒成立,若f(1)=2,則f(2019)=_____.10.(2021·全國高三其他模擬)若定義在SKIPIF1<0上的非零函數(shù)SKIPIF1<0,對任意實(shí)數(shù)SKIPIF1<0,存在常數(shù)SKIPIF1<0,使得SKIPIF1<0恒成立,則稱SKIPIF1<0是一個“SKIPIF1<0函數(shù)”,試寫出一個“SKIPIF1<0函數(shù)”:__________.11.(2021·山東煙臺市·高三其他模擬)已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小正周期為___________,SKIPIF1<0的一個解析式可以為___________.12.(2021·上海高三二模)設(shè)函數(shù)SKIPIF1<0的反函數(shù)為SKIPIF1<0.(1)解方程:SKIPIF1<0;(2)設(shè)SKIPIF1<0是定義在SKIPIF1<0上且以SKIPIF1<0為周期的奇函數(shù).當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,試求SKIPIF1<0的值.1.(2021·全國高考真題(文))設(shè)SKIPIF1<0是定義域?yàn)镽的奇函數(shù),且SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2020·全國高考真題(理))設(shè)函數(shù)SKIPIF1<0,則f(x)()A.是偶函數(shù),且在SKIPIF1<0單調(diào)遞增 B.是奇函數(shù),且在SKIPIF1<0單調(diào)遞減C.是偶函數(shù),且在SKIPIF1<0單調(diào)遞增 D.是奇函數(shù),且在SKIPIF1<0單調(diào)遞減3.(2019·北京高考真題(文))設(shè)函數(shù)f(x)=cosx+bsinx(b為常數(shù)),則“b=0”是“f(x)為偶函數(shù)”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件4.(2019·全國高考真題(文))設(shè)f(x)為奇函數(shù),且當(dāng)x≥0時(shí),f(x)=SKIPIF1<0,則當(dāng)x<0時(shí),f(x)=A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<05.(2018·全國高考真題(文))已知SKIPIF1<0是定義域?yàn)镾KIPIF1<0的奇函數(shù),滿足SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2020·全國高考真題(理))關(guān)于函數(shù)f(x)=SKIPIF1<0有如下四個命題:①f(x)的圖象關(guān)于y軸對稱.②f(x)的圖象關(guān)于原點(diǎn)對稱.③f(x)的圖象關(guān)于直線x=SKIPIF1<0對稱.④f(x)的最小值為2.其中所有真命題的序號是__________.7.(2019·全國高考真題(理))已知SKIPIF1<0是奇函數(shù),且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0__________.8.(2014·安徽高考真題(文))若函數(shù)SKIPIF1<0是周期為4的奇函數(shù),且在SKIPIF1<0上的解析式為SKIPIF1<0,則SKIPIF1<0___________9.(2017·山東高考真題(文))已知f(x)是定義在R上的偶函數(shù),且f(x+4)=f(x-2).若當(dāng)x∈[-3,0]時(shí),f(x)=6-x,則f(919)=________.10.(2019·北京高考真題(理))設(shè)函數(shù)f(x)=ex+ae?x(a為常數(shù)).若f(x)為奇函數(shù),則a=________;若f(x)是R上的增函數(shù),則a的取值范圍是___________.1.【答案】C【分析】由函數(shù)的奇偶性和值域直接判斷可排除A、B、D,對C,采用導(dǎo)數(shù)法,函數(shù)函數(shù)圖象可判斷正確【詳解】對A,SKIPIF1<0為奇函數(shù),值域?yàn)镾KIPIF1<0,故A錯;對B、SKIPIF1<0,函數(shù)為“對勾函數(shù)”因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故B錯誤;對C,SKIPIF1<0為奇函數(shù),當(dāng)SKIPIF1<0時(shí),因?yàn)镾KIPIF1<0,故SKIPIF1<0在SKIPIF1<0為增函數(shù),SKIPIF1<0時(shí),函數(shù)值為0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,畫出圖形如圖:所以SKIPIF1<0,故C正確;對D,SKIPIF1<0,函數(shù)為奇函數(shù),值域?yàn)镾KIPIF1<0,故D錯誤;故選:C【點(diǎn)睛】本題考查函數(shù)的奇偶性與值域的判斷,屬于基礎(chǔ)題①判斷函數(shù)奇偶性除了定義法外,還可采用口訣進(jìn)行判斷:奇函數(shù)=奇函數(shù)SKIPIF1<0奇函數(shù)=奇函數(shù)SKIPIF1<0偶函數(shù);②對于常見函數(shù)類型,應(yīng)熟記于心,比如反比例函數(shù),對勾函數(shù);③對于復(fù)雜函數(shù),研究值域時(shí),可采用導(dǎo)數(shù)進(jìn)行研究2.【答案】C【分析】由SKIPIF1<0為奇函數(shù)且對任意SKIPIF1<0,SKIPIF1<0,可得函數(shù)的周期為4,再奇函數(shù)的性質(zhì)可得SKIPIF1<0,從而可求出SKIPIF1<0,進(jìn)而可求得SKIPIF1<0的值【詳解】解:因?yàn)镾KIPIF1<0為奇函數(shù),即SKIPIF1<0,因?yàn)閷θ我釹KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0.故選:C.3.【答案】A【分析】先分析得到函數(shù)的周期為1,再利用函數(shù)的周期求值得解.【詳解】因?yàn)楹瘮?shù)是偶函數(shù),SKIPIF1<0,所以SKIPIF1<0=f(x)所以函數(shù)的周期為1,所以SKIPIF1<0.故選:A.4.【答案】C【分析】分別令SKIPIF1<0,令SKIPIF1<0得到SKIPIF1<0,進(jìn)而推得函數(shù)SKIPIF1<0是周期函數(shù)求解.【詳解】令SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,(SKIPIF1<0舍)令SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0.∴SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0的周期為4,即SKIPIF1<0是周期函數(shù).∴SKIPIF1<0.故選:C.1.【答案】B【分析】對于①舉特殊值可判斷;求出SKIPIF1<0,可判斷在SKIPIF1<0上SKIPIF1<0,可判斷②和③;對于④.轉(zhuǎn)化為判斷函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的圖像在SKIPIF1<0上的交點(diǎn)個數(shù),分別作出函數(shù)圖像,可判斷.【詳解】對于①.SKIPIF1<0,SKIPIF1<0,顯然SKIPIF1<0所以函數(shù)SKIPIF1<0不是偶函數(shù),故①不正確.對于②.SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0上是減函數(shù),故②正確.對于③.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0上是減函數(shù),所以SKIPIF1<0在SKIPIF1<0上無最小值,故③不正確.對于④.SKIPIF1<0在SKIPIF1<0上零點(diǎn)的個數(shù),即方程SKIPIF1<0在SKIPIF1<0上根的個數(shù).即函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的圖像在SKIPIF1<0上的交點(diǎn)個數(shù).分別作出函數(shù)SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上的圖像.如圖.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0由圖可知函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的圖像在SKIPIF1<0上有2個交點(diǎn).所以SKIPIF1<0在SKIPIF1<0上有兩個零點(diǎn),故④正確故選:B【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查函數(shù)奇偶性、單調(diào)性的判斷,函數(shù)零點(diǎn)個數(shù)的判斷.解答本題的關(guān)鍵是判斷SKIPIF1<0在SKIPIF1<0上零點(diǎn)的個數(shù),轉(zhuǎn)化為判斷函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的圖像在SKIPIF1<0上的交點(diǎn)個數(shù).屬于中檔題.2.【答案】D【分析】先求得函數(shù)為奇函數(shù),圖象關(guān)于原點(diǎn)對稱,故排除A,B,C,得出答案.【詳解】解:SKIPIF1<0,定義域?yàn)镾KIPIF1<0,且SKIPIF1<0,故函數(shù)為奇函數(shù),圖象關(guān)于原點(diǎn)對稱,故排除A,B,C,故選:D.3.【答案】C【分析】首先將SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0或SKIPIF1<0,根據(jù)函數(shù)單調(diào)性解SKIPIF1<0和SKIPIF1<0,進(jìn)而可以求出結(jié)果.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0在SKIPIF1<0上為奇函數(shù),所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,因此SKIPIF1<0,綜上:不等式SKIPIF1<0的解集為SKIPIF1<0.故選:C.4.【答案】A【分析】先求出SKIPIF1<0的定義域,然后利用奇函數(shù)的性質(zhì)求出SKIPIF1<0的值,從而得到SKIPIF1<0的定義域,然后利用反函數(shù)的定義,即可求出SKIPIF1<0的值域.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0可得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0的定義域?yàn)镾KIPIF1<0或SKIPIF1<0,因?yàn)镾KIPIF1<0是奇函數(shù),定義域關(guān)于原點(diǎn)對稱,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的定義域?yàn)镾KIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0圖象與函數(shù)SKIPIF1<0圖象關(guān)于直線SKIPIF1<0對稱,所以SKIPIF1<0與SKIPIF1<0互為反函數(shù),故SKIPIF1<0的值域即為SKIPIF1<0的定義域SKIPIF1<0.故選:SKIPIF1<0.5.【答案】D【分析】根據(jù)題意,由函數(shù)奇偶性的定義分析SKIPIF1<0、SKIPIF1<0的值,即可得SKIPIF1<0的解析式,由復(fù)合函數(shù)單調(diào)性的判斷方法分析SKIPIF1<0的單調(diào)性,據(jù)此分析可得答案.【詳解】解:根據(jù)題意,SKIPIF1<0是定義在SKIPIF1<0,SKIPIF1<0上的偶函數(shù),則有SKIPIF1<0,則SKIPIF1<0,同時(shí)SKIPIF1<0,即SKIPIF1<0,則有SKIPIF1<0,必有SKIPIF1<0,則SKIPIF1<0,其定義域?yàn)镾KIPIF1<0,SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,若SKIPIF1<0,則有SKIPIF1<0,在區(qū)間SKIPIF1<0,SKIPIF1<0上,SKIPIF1<0且為減函數(shù),SKIPIF1<0在區(qū)間SKIPIF1<0,SKIPIF1<0上為增函數(shù),則SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上為減函數(shù),其最大值為SKIPIF1<0,故選:SKIPIF1<0.6.【答案】A【分析】函數(shù)SKIPIF1<0的零點(diǎn)個數(shù)轉(zhuǎn)化為兩個函數(shù)圖象交點(diǎn)的個數(shù),轉(zhuǎn)化條件為函數(shù)SKIPIF1<0周期SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,根據(jù)周期性可畫出它的圖象,從圖象上觀察交點(diǎn)個數(shù)即可.【詳解】∵SKIPIF1<0,則函數(shù)SKIPIF1<0是周期SKIPIF1<0的周期函數(shù).又∵函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),且SKIPIF1<0時(shí),SKIPIF1<0,∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,令SKIPIF1<0,則函數(shù)SKIPIF1<0的零點(diǎn)個數(shù)即為函數(shù)SKIPIF1<0和SKIPIF1<0的圖象交點(diǎn)個數(shù),分別作出函數(shù)SKIPIF1<0和SKIPIF1<0的圖象,如下圖,顯然SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上有1個交點(diǎn),在SKIPIF1<0上有一個交點(diǎn),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0無交點(diǎn).綜上,函數(shù)SKIPIF1<0和SKIPIF1<0的圖象交點(diǎn)個數(shù)為2,即函數(shù)SKIPIF1<0的零點(diǎn)個數(shù)是2.故選:A7.【答案】B【分析】求得函數(shù)SKIPIF1<0是周期函數(shù),且周期SKIPIF1<0,依題意,只需使函數(shù)SKIPIF1<0的圖象與函數(shù)SKIPIF1<0的圖象在SKIPIF1<0上有5個交點(diǎn)即可.在同一坐標(biāo)系中分別作出SKIPIF1<0與SKIPIF1<0的圖象,數(shù)形結(jié)合可得結(jié)果.【詳解】因?yàn)镾KIPIF1<0是SKIPIF1<0上的偶函數(shù),所以,對SKIPIF1<0,SKIPIF1<0,所以函數(shù)SKIPIF1<0是周期函數(shù),且周期SKIPIF1<0.SKIPIF1<0,依題意,只需使函數(shù)SKIPIF1<0的圖象與函數(shù)SKIPIF1<0的圖象在SKIPIF1<0上有5個交點(diǎn)即可.在同一坐標(biāo)系中分別作出SKIPIF1<0與SKIPIF1<0的圖象,由圖可知,實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0,解得SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:B.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題的關(guān)鍵點(diǎn)是:在同一坐標(biāo)系中分別作出SKIPIF1<0與SKIPIF1<0的圖象,數(shù)形結(jié)合得到SKIPIF1<0滿足SKIPIF1<0.8.【答案】AC【分析】根據(jù)SKIPIF1<0是奇函數(shù),SKIPIF1<0為偶函數(shù),可得SKIPIF1<0的對稱中心和對稱軸,再結(jié)合SKIPIF1<0時(shí),SKIPIF1<0解析式,作出SKIPIF1<0的圖象,可判斷A、C的正誤;根據(jù)對稱軸和對稱中心,即可得SKIPIF1<0的最小正周期,可判斷B的正誤;根據(jù)SKIPIF1<0的周期性及題干條件,代數(shù)化簡,即可比較SKIPIF1<0的大小,即可得答案.【詳解】對于A:因?yàn)镾KIPIF1<0是奇函數(shù),圖象關(guān)于(0,0)對稱,所以SKIPIF1<0圖象關(guān)于(-1,0)對稱,因?yàn)镾KIPIF1<0為偶函數(shù),圖象關(guān)于x=0對稱,所以SKIPIF1<0圖象關(guān)于x=1對稱,又因?yàn)镾KIPIF1<0時(shí),SKIPIF1<0,作出SKIPIF1<0圖象,如下圖所示所以函數(shù)SKIPIF1<0圖象不關(guān)于y軸對稱,即SKIPIF1<0不是偶函數(shù),故A正確;對于B:因?yàn)镾KIPIF1<0是奇函數(shù),所以SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0為偶函數(shù),所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以函數(shù)SKIPIF1<0的最小正周期為8,故B錯誤;對于C:由圖象可得:在SKIPIF1<0上SKIPIF1<0圖象與x軸有3個交點(diǎn),所以函數(shù)SKIPIF1<0在SKIPIF1<0上有3個零點(diǎn),故C正確;對于D:由題意得:SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故D錯誤.故選:AC【點(diǎn)睛】解題的關(guān)鍵是熟練掌握函數(shù)的周期性、對稱性,并靈活應(yīng)用,難點(diǎn)在于,根據(jù)對稱性,得到周期性,再結(jié)合題意求解,考查分析理解,數(shù)形結(jié)合的能力,屬中檔題.9.【答案】﹣2【分析】根據(jù)題意,由f(1+x)=f(1﹣x)結(jié)合函數(shù)的奇偶性分析可得f(x+4)=f[(x+2)+2]=﹣f(x+2)=f(x),即可得函數(shù)y=f(x)為周期為4的周期函數(shù),據(jù)此可得f(2019)=f(﹣1+2020)=f(﹣1)=﹣f(1),即可求解結(jié)論.【詳解】解:根據(jù)題意,對任意t∈R都有f(1+x)=f(1﹣x),則函數(shù)y=f(x)的圖象關(guān)于直線x=1對稱,又由函數(shù)y=f(x)為奇函數(shù),則函數(shù)y=f(x)的圖象關(guān)于原點(diǎn)對稱,則有f(x+2)=f[1+(x+1)]=f[1﹣(x+1)]=f(﹣x),故f(x+4)=f[(x+2)+2]=﹣f(x+2)=f(x),即函數(shù)y=f(x)為周期為4的周期函數(shù),則f(2019)=f(﹣1+2020)=f(﹣1)=﹣f(1)=﹣2,故答案為:﹣2.10.【答案】SKIPIF1<0(答案不唯一).【分析】根據(jù)SKIPIF1<0得到SKIPIF1<0,即寫一個周期為1的函數(shù)即可.【詳解】當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0得SKIPIF1<0,所以只需寫一個周期為1的函數(shù),所以滿足條件的函數(shù)可以為SKIPIF1<0.故答案為:SKIPIF1<0(答案不唯一).11.【答案】SKIPIF1<0SKIPIF1<0(答案不唯一)【分析】通過SKIPIF1<0得出SKIPIF1<0,即可求出SKIPIF1<0的最小正周期;通過SKIPIF1<0得出函數(shù)SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0對稱,然后列舉一個滿足關(guān)于點(diǎn)SKIPIF1<0對稱以及最小正周期為SKIPIF1<0的方程即可.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0的最小正周期為SKIPIF1<0.因?yàn)镾KIPIF1<0,所以函數(shù)SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0對稱,滿足關(guān)于點(diǎn)SKIPIF1<0對稱以及最小正周期為SKIPIF1<0的方程可以為SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0(答案不唯一).12.【答案】(1)原方程的解集為SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)利用底數(shù)的運(yùn)算性質(zhì)直接求解所原方程,結(jié)合真數(shù)有意義可求得原方程的解集;(2)求得當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,通過計(jì)算得出SKIPIF1<0,即可得解.【詳解】(1)SKIPIF1<0,則SKIPIF1<0即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.由SKIPIF1<0可得SKIPIF1<0,SKIPIF1<0,所以,原方程的解集為SKIPIF1<0;(2)SKIPIF1<0,其中SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),所以,SKIPIF1<0,由于SKIPIF1<0是定義在SKIPIF1<0上且以SKIPIF1<0為周期的奇函數(shù),所以對于任意實(shí)數(shù)SKIPIF1<0,均有SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0.因此,SKIPIF1<0.【點(diǎn)睛】方法點(diǎn)睛:函數(shù)的三個性質(zhì):單調(diào)性、奇偶性和周期性,在高考中一般不會單獨(dú)命題,而是常將它們綜合在一起考查,其中單調(diào)性與奇偶性結(jié)合、周期性與抽象函數(shù)相結(jié)合,并結(jié)合奇偶性求函數(shù)值,多以選擇題、填空題的形式呈現(xiàn),且主要有以下幾種命題角度;(1)函數(shù)的單調(diào)性與奇偶性相結(jié)合,注意函數(shù)的單調(diào)性及奇偶性的定義,以及奇、偶函數(shù)圖象的對稱性.(2)周期性與奇偶性相結(jié)合,此類問題多考查求值問題,常利用奇偶性及周期性進(jìn)行交換,將所求函數(shù)值的自變量轉(zhuǎn)化到已知解析式的函數(shù)定義域內(nèi)求解;(3)周期性、奇偶性與單調(diào)性相結(jié)合,解決此類問題通常先利用周期性轉(zhuǎn)化自變量所在的區(qū)間,然后利用奇偶性和單調(diào)性求解.1.【答案】C【分析】由題意利用函數(shù)的奇偶性和函數(shù)的遞推關(guān)系即可求得SKIPIF1<0的值.【詳解】由題意可得:SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0.故選:C.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題主要考查了函數(shù)的奇偶性和函數(shù)的遞推關(guān)系式,靈活利用所給的條件進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.2.【答案】D【分析】根據(jù)奇偶性的定義可判斷出SKIPIF1<0為奇函數(shù),排除AC;當(dāng)SKIPIF1<0時(shí),利用函數(shù)單調(diào)性的性質(zhì)可判斷出SKIPIF1<0單調(diào)遞增,排除B;當(dāng)SKIPIF1<0時(shí),利用復(fù)合函數(shù)單調(diào)性可判斷出SKIPIF1<0單調(diào)遞減,從而得到結(jié)果.【詳解】由SKIPIF1<0得SKIPIF1<0定義域?yàn)镾KIPIF1<0,關(guān)于坐標(biāo)原點(diǎn)對稱,又SKIPIF1<0,SKIPIF1<0為定義域上的奇函數(shù),可排除AC;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,排除B;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在定義域內(nèi)單調(diào)遞增,根據(jù)復(fù)合函數(shù)單調(diào)性可知:SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,D正確.故選:D.【點(diǎn)睛】本題考查函數(shù)奇偶性和單調(diào)性的判斷;判斷奇偶性的方法是在定義域關(guān)于原點(diǎn)對稱的前提下,根據(jù)SKIPIF1<0與SKIPIF1<0的關(guān)系得到結(jié)論;判斷單調(diào)性的關(guān)鍵是能夠根據(jù)自變量的范圍化簡函數(shù),根據(jù)單調(diào)性的性質(zhì)和復(fù)合函數(shù)“同增異減”性得到結(jié)論.3.【答案】C【分析】根據(jù)定義域?yàn)镽的函數(shù)SKIPIF1<0為偶函數(shù)等價(jià)于SKIPIF1<0進(jìn)行判斷.【詳解】SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0為偶函數(shù);SKIPIF1<0為偶函數(shù)時(shí),SKIPIF1<0對任意的SKIPIF1<0恒成立,SKIPIF1<0SKIPIF1<0,得SKIPIF1<0對任意的SKIPIF1<0恒成立,從而SKIPIF1<0.從而“SKIPIF1<0”是“SKIPIF1<0為偶函數(shù)”的充分必要條件,故選C.【點(diǎn)睛】本題較易,注重重要知識、基礎(chǔ)知識、邏輯推理能力的考查.4.【答案】D【分析】先把x<0,轉(zhuǎn)化為-x>0,代入可得SKIPIF1<0,結(jié)合奇偶性可得SKIPIF1<0.【詳解】SKIPIF1<0是奇函數(shù),SKIPIF1<0時(shí),SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0.故選D.【點(diǎn)睛】本題考查分段函數(shù)的奇偶性和解析式,滲透了數(shù)學(xué)抽象和數(shù)學(xué)運(yùn)算素養(yǎng).采取代換法,利用轉(zhuǎn)化與化歸的思想解題.5.【答案】C【詳解】分析:先根據(jù)奇函數(shù)性質(zhì)以及對稱性確定函數(shù)周期,再根據(jù)周期以及對應(yīng)函數(shù)值求結(jié)果.詳解:因?yàn)镾KIPIF1<0是定義域?yàn)镾KIPIF1<0的奇函數(shù),且SKIPIF1<0,所以SKIPIF1<0,因此SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,從而
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 預(yù)研階段風(fēng)險(xiǎn)控制-洞察分析
- 香菇多糖藥物開發(fā)前景-洞察分析
- 順鉑抗腫瘤機(jī)制探討-洞察分析
- 元數(shù)據(jù)自動生成-洞察分析
- 雄黃礦床資源評價(jià)-洞察分析
- 音樂平臺社區(qū)與用戶粘性-洞察分析
- 《甲狀腺功能亢進(jìn)癥》課件
- 《空分冷箱檢修》課件
- 《園林動線設(shè)計(jì)標(biāo)準(zhǔn)》課件
- 2025年浙教新版一年級語文上冊階段測試試卷
- (完整版)光伏施工質(zhì)量控制重點(diǎn)
- 微積分試卷及規(guī)范標(biāo)準(zhǔn)答案6套
- 藍(lán)色國家科學(xué)基金16.9杰青優(yōu)青人才科學(xué)基金答辯模板
- 銷售儲備培養(yǎng)方案
- 《南亞》優(yōu)教課件(第1課時(shí))
- 【電動汽車兩擋變速器結(jié)構(gòu)設(shè)計(jì)10000字(論文)】
- 非固化橡膠瀝青防水涂料技術(shù)交底
- 高二期末考試動員主題班會
- 易錯題(試題)-2024一年級上冊數(shù)學(xué)北師大版含答案
- 滕州市九年級上學(xué)期期末語文試題(原卷版+解析版)
- EPC項(xiàng)目投標(biāo)人承包人工程經(jīng)濟(jì)的合理性分析、評價(jià)
評論
0/150
提交評論