2024屆湖南省婁底市名校中考適應(yīng)性考試數(shù)學(xué)試題含解析_第1頁
2024屆湖南省婁底市名校中考適應(yīng)性考試數(shù)學(xué)試題含解析_第2頁
2024屆湖南省婁底市名校中考適應(yīng)性考試數(shù)學(xué)試題含解析_第3頁
2024屆湖南省婁底市名校中考適應(yīng)性考試數(shù)學(xué)試題含解析_第4頁
2024屆湖南省婁底市名校中考適應(yīng)性考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆湖南省婁底市名校中考適應(yīng)性考試數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖所示,直線a∥b,∠1=35°,∠2=90°,則∠3的度數(shù)為()A.125° B.135° C.145° D.155°2.不等式的解集在數(shù)軸上表示正確的是()A. B. C. D.3.等腰三角形一邊長等于5,一邊長等于10,它的周長是()A.20 B.25 C.20或25 D.154.氣象臺預(yù)報“本市明天下雨的概率是85%”,對此信息,下列說法正確的是()A.本市明天將有的地區(qū)下雨 B.本市明天將有的時間下雨C.本市明天下雨的可能性比較大 D.本市明天肯定下雨5.把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊地放在一個底面為長方形(長為寬為)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示.則圖②中兩塊陰影部分周長和是()A. B. C. D.6.方程的解為()A.x=4 B.x=﹣3 C.x=6 D.此方程無解7.分式的值為0,則x的取值為()A.x=-3 B.x=3 C.x=-3或x=1 D.x=3或x=-18.據(jù)調(diào)查,某班20為女同學(xué)所穿鞋子的尺碼如表所示,尺碼(碼)3435363738人數(shù)251021則鞋子尺碼的眾數(shù)和中位數(shù)分別是()A.35碼,35碼 B.35碼,36碼 C.36碼,35碼 D.36碼,36碼9.如圖,矩形ABCD的頂點A、C分別在直線a、b上,且a∥b,∠1=60°,則∠2的度數(shù)為()A.30° B.45° C.60° D.75°10.下列運(yùn)算正確的是()A.2a+3a=5a2B.(a3)3=a9C.a(chǎn)2?a4=a8D.a(chǎn)6÷a3=a211.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A、B兩點,與y軸交于點C,對稱軸為直線x=-1,點B的坐標(biāo)為(1,0),則下列結(jié)論:①AB=4;②b2-4ac>0;③ab<0;④a2-ab+ac<0,其中正確的結(jié)論有()個.A.3 B.4 C.2 D.112.如圖,在矩形ABCD中,連接BD,點O是BD的中點,若點M在AD邊上,連接MO并延長交BC邊于點M’,連接MB,DM’則圖中的全等三角形共有()A.3對 B.4對 C.5對 D.6對二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,已知雙曲線經(jīng)過直角三角形OAB斜邊OA的中點D,且與直角邊AB相交于點C.若點A的坐標(biāo)為(-6,4),則△AOC的面積為.14.如圖,在平面直角坐標(biāo)系中,點O為原點,菱形OABC的對角線OB在x軸上,頂點A在反比例函數(shù)y=的圖象上,則菱形的面積為_____.15.關(guān)于的方程有兩個不相等的實數(shù)根,那么的取值范圍是__________.16.如圖(1),將一個正六邊形各邊延長,構(gòu)成一個正六角星形AFBDCE,它的面積為1;取△ABC和△DEF各邊中點,連接成正六角星形A1F1B1D1C1E1,如圖(2)中陰影部分;取△A1B1C1和△D1E1F1各邊中點,連接成正六角星形A2F2B2D2C2E2,如圖(3)中陰影部分;如此下去…,則正六角星形A4F4B4D4C4E4的面積為_________________.17.一組正方形按如圖所示的方式放置,其中頂點B1在y軸上,頂點C1,E1,E2,C2,E3,E4,C3……在x軸上,已知正方形A1B1C1D1的頂點C1的坐標(biāo)是(﹣,0),∠B1C1O=60°,B1C1∥B2C2∥B3C3……則正方形A2018B2018C2018D2018的頂點D2018縱坐標(biāo)是_____.18.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與軸相交于點A、B,若其對稱軸為直線x=2,則OB–OA的值為_______.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)已知:△ABC在坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度)畫出△ABC向下平移4個單位得到的△A1B1C1,并直接寫出C1點的坐標(biāo);以點B為位似中心,在網(wǎng)格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比為2︰1,并直接寫出C2點的坐標(biāo)及△A2BC2的面積.20.(6分)已知,拋物線y=ax2+c過點(-2,2)和點(4,5),點F(0,2)是y軸上的定點,點B是拋物線上除頂點外的任意一點,直線l:y=kx+b經(jīng)過點B、F且交x軸于點A.(1)求拋物線的解析式;(2)①如圖1,過點B作BC⊥x軸于點C,連接FC,求證:FC平分∠BFO;②當(dāng)k=時,點F是線段AB的中點;(3)如圖2,M(3,6)是拋物線內(nèi)部一點,在拋物線上是否存在點B,使△MBF的周長最???若存在,求出這個最小值及直線l的解析式;若不存在,請說明理由.21.(6分)如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)的圖象交于A,B兩點,與X軸交于點C,與Y軸交于點D,已知,A(n,1),點B的坐標(biāo)為(﹣2,m)(1)求反比例函數(shù)的解析式和一次函數(shù)的解析式;(2)連結(jié)BO,求△AOB的面積;(3)觀察圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值時x的取值范圍是.22.(8分)請根據(jù)圖中提供的信息,回答下列問題:(1)一個水瓶與一個水杯分別是多少元?(2)甲、乙兩家商場同時出售同樣的水瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定:這兩種商品都打八折;乙商場規(guī)定:買一個水瓶贈送兩個水杯,另外購買的水杯按原價賣.若某單位想要買5個水瓶和n(n>10,且n為整數(shù))個水杯,請問選擇哪家商場購買更合算,并說明理由.(必須在同一家購買)23.(8分)定義:對于給定的二次函數(shù)y=a(x﹣h)2+k(a≠0),其伴生一次函數(shù)為y=a(x﹣h)+k,例如:二次函數(shù)y=2(x+1)2﹣3的伴生一次函數(shù)為y=2(x+1)﹣3,即y=2x﹣1.(1)已知二次函數(shù)y=(x﹣1)2﹣4,則其伴生一次函數(shù)的表達(dá)式為_____;(2)試說明二次函數(shù)y=(x﹣1)2﹣4的頂點在其伴生一次函數(shù)的圖象上;(3)如圖,二次函數(shù)y=m(x﹣1)2﹣4m(m≠0)的伴生一次函數(shù)的圖象與x軸、y軸分別交于點B、A,且兩函數(shù)圖象的交點的橫坐標(biāo)分別為1和2,在∠AOB內(nèi)部的二次函數(shù)y=m(x﹣1)2﹣4m的圖象上有一動點P,過點P作x軸的平行線與其伴生一次函數(shù)的圖象交于點Q,設(shè)點P的橫坐標(biāo)為n,直接寫出線段PQ的長為時n的值.24.(10分)如圖,在△ABC中,∠ACB=90°,O是AB上一點,以O(shè)A為半徑的⊙O與BC相切于點D,與AB交于點E,連接ED并延長交AC的延長線于點F.(1)求證:AE=AF;(2)若DE=3,sin∠BDE=,求AC的長.25.(10分)解不等式:3x﹣1>2(x﹣1),并把它的解集在數(shù)軸上表示出來.26.(12分)如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.

(1)求證:CD是⊙O的切線;

(2)過點B作⊙O的切線交CD的延長線于點E,BC=6,ADBD=227.(12分)為了支持大學(xué)生創(chuàng)業(yè),某市政府出臺了一項優(yōu)惠政策:提供10萬元的無息創(chuàng)業(yè)貸款.小王利用這筆貸款,注冊了一家淘寶網(wǎng)店,招收5名員工,銷售一種火爆的電子產(chǎn)品,并約定用該網(wǎng)店經(jīng)營的利潤,逐月償還這筆無息貸款.已知該產(chǎn)品的成本為每件4元,員工每人每月的工資為4千元,該網(wǎng)店還需每月支付其它費用1萬元.該產(chǎn)品每月銷售量y(萬件)與銷售單價x(元)萬件之間的函數(shù)關(guān)系如圖所示.求該網(wǎng)店每月利潤w(萬元)與銷售單價x(元)之間的函數(shù)表達(dá)式;小王自網(wǎng)店開業(yè)起,最快在第幾個月可還清10萬元的無息貸款?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解題分析】分析:如圖求出∠5即可解決問題.詳解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°-∠5=125°,故選:A.點睛:本題考查平行線的性質(zhì)、三角形內(nèi)角和定理,鄰補(bǔ)角的性質(zhì)等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題.2、B【解題分析】

根據(jù)不等式的性質(zhì):先移項,再合并即可解得不等式的解集,最后將解集表示在數(shù)軸上即可.【題目詳解】解:解:移項得,

x≤3-2,

合并得,

x≤1;

在數(shù)軸上表示應(yīng)包括1和它左邊的部分,如下:;

故選:B.【題目點撥】本題考查了一元一次不等式的解集的求法及在數(shù)軸上表示不等式的解集,注意數(shù)軸上包括的端點實心點表示.3、B【解題分析】

題目中沒有明確腰和底,故要分情況討論,再結(jié)合三角形的三邊關(guān)系分析即可.【題目詳解】當(dāng)5為腰時,三邊長為5、5、10,而,此時無法構(gòu)成三角形;當(dāng)5為底時,三邊長為5、10、10,此時可以構(gòu)成三角形,它的周長故選B.4、C【解題分析】試題解析:根據(jù)概率表示某事情發(fā)生的可能性的大小,分析可得:A、明天降水的可能性為85%,并不是有85%的地區(qū)降水,錯誤;B、本市明天將有85%的時間降水,錯誤;C、明天降水的可能性為90%,說明明天降水的可能性比較大,正確;D、明天肯定下雨,錯誤.故選C.考點:概率的意義.5、D【解題分析】

根據(jù)題意列出關(guān)系式,去括號合并即可得到結(jié)果.【題目詳解】解:設(shè)小長方形卡片的長為x,寬為y,根據(jù)題意得:x+2y=a,則圖②中兩塊陰影部分周長和是:2a+2(b-2y)+2(b-x)=2a+4b-4y-2x=2a+4b-2(x+2y)=2a+4b-2a=4b.故選擇:D.【題目點撥】此題考查了整式的加減,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.6、C【解題分析】

先把分式方程化為整式方程,求出x的值,代入最簡公分母進(jìn)行檢驗.【題目詳解】方程兩邊同時乘以x-2得到1-(x-2)=﹣3,解得x=6.將x=6代入x-2得6-2=4,∴x=6就是原方程的解.故選C【題目點撥】本題考查的是解分式方程,熟知解分式方程的基本步驟是解答此題的關(guān)鍵.7、A【解題分析】

分式的值為2的條件是:(2)分子等于2;(2)分母不為2.兩個條件需同時具備,缺一不可.據(jù)此可以解答本題.【題目詳解】∵原式的值為2,∴,∴(x-2)(x+3)=2,即x=2或x=-3;又∵|x|-2≠2,即x≠±2.∴x=-3.故選:A.【題目點撥】此題考查的是對分式的值為2的條件的理解,該類型的題易忽略分母不為2這個條件.8、D【解題分析】

眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個;找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù).【題目詳解】數(shù)據(jù)36出現(xiàn)了10次,次數(shù)最多,所以眾數(shù)為36,一共有20個數(shù)據(jù),位置處于中間的數(shù)是:36,36,所以中位數(shù)是(36+36)÷2=36.故選D.【題目點撥】考查中位數(shù)與眾數(shù),掌握眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個;找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù)是解題的關(guān)鍵.9、C【解題分析】試題分析:過點D作DE∥a,∵四邊形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故選C.考點:1矩形;2平行線的性質(zhì).10、B【解題分析】

直接利用同底數(shù)冪的乘除運(yùn)算法則以及冪的乘方運(yùn)算法則、合并同類項法則分別化簡得出答案.【題目詳解】A、2a+3a=5a,故此選項錯誤;B、(a3)3=a9,故此選項正確;C、a2?a4=a6,故此選項錯誤;D、a6÷a3=a3,故此選項錯誤.故選:B.【題目點撥】此題主要考查了同底數(shù)冪的乘除運(yùn)算以及合并同類項和冪的乘方運(yùn)算,正確掌握運(yùn)算法則是解題關(guān)鍵.11、A【解題分析】

利用拋物線的對稱性可確定A點坐標(biāo)為(-3,0),則可對①進(jìn)行判斷;利用判別式的意義和拋物線與x軸有2個交點可對②進(jìn)行判斷;由拋物線開口向下得到a>0,再利用對稱軸方程得到b=2a>0,則可對③進(jìn)行判斷;利用x=-1時,y<0,即a-b+c<0和a>0可對④進(jìn)行判斷.【題目詳解】∵拋物線的對稱軸為直線x=-1,點B的坐標(biāo)為(1,0),∴A(-3,0),∴AB=1-(-3)=4,所以①正確;∵拋物線與x軸有2個交點,∴△=b2-4ac>0,所以②正確;∵拋物線開口向下,∴a>0,∵拋物線的對稱軸為直線x=-=-1,∴b=2a>0,∴ab>0,所以③錯誤;∵x=-1時,y<0,∴a-b+c<0,而a>0,∴a(a-b+c)<0,所以④正確.故選A.【題目點撥】本題考查了拋物線與x軸的交點:對于二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0),△=b2-4ac決定拋物線與x軸的交點個數(shù):△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.也考查了二次函數(shù)的性質(zhì).12、D【解題分析】

根據(jù)矩形的對邊平行且相等及其對稱性,即可寫出圖中的全等三角形的對數(shù).【題目詳解】圖中圖中的全等三角形有△ABM≌△CDM’,△ABD≌△CDB,△OBM≌△ODM’,△OBM’≌△ODM,△M’BM≌△MDM’,△DBM≌△BDM’,故選D.【題目點撥】此題主要考查矩形的性質(zhì)及全等三角形的判定,解題的關(guān)鍵是熟知矩形的對稱性.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2【解題分析】解:∵OA的中點是D,點A的坐標(biāo)為(﹣6,4),∴D(﹣1,2),∵雙曲線y=經(jīng)過點D,∴k=﹣1×2=﹣6,∴△BOC的面積=|k|=1.又∵△AOB的面積=×6×4=12,∴△AOC的面積=△AOB的面積﹣△BOC的面積=12﹣1=2.14、1【解題分析】

連接AC交OB于D,由菱形的性質(zhì)可知.根據(jù)反比例函數(shù)中k的幾何意義,得出△AOD的面積=1,從而求出菱形OABC的面積=△AOD的面積的4倍.【題目詳解】連接AC交OB于D.

四邊形OABC是菱形,

點A在反比例函數(shù)的圖象上,

的面積,

菱形OABC的面積=的面積=1.【題目點撥】本題考查的知識點是菱形的性質(zhì)及反比例函數(shù)的比例系數(shù)k的幾何意義.解題關(guān)鍵是反比例函數(shù)圖象上的點與原點所連的線段、坐標(biāo)軸、向坐標(biāo)軸作垂線所圍成的直角三角形面積S的關(guān)系,即.15、且【解題分析】分析:根據(jù)一元二次方程的定義以及根的判別式的意義可得△=4-12m>1且m≠1,求出m的取值范圍即可.詳解:∵一元二次方程mx2-2x+3=1有兩個不相等的實數(shù)根,∴△>1且m≠1,∴4-12m>1且m≠1,∴m<且m≠1,故答案為:m<且m≠1.點睛:本題考查了一元二次方程ax2+bx+c=1(a≠1,a,b,c為常數(shù))根的判別式△=b2-4ac.當(dāng)△>1,方程有兩個不相等的實數(shù)根;當(dāng)△=1,方程有兩個相等的實數(shù)根;當(dāng)△<1,方程沒有實數(shù)根.也考查了一元二次方程的定義.16、【解題分析】∵正六角星形A2F2B2D2C2E2邊長是正六角星形A1F1B1D1C1E邊長的,∴正六角星形A2F2B2D2C2E2面積是正六角星形A1F1B1D1C1E面積的.同理∵正六角星形A4F4B4D4C4E4邊長是正六角星形A1F1B1D1C1E邊長的,∴正六角星形A4F4B4D4C4E4面積是正六角星形A1F1B1D1C1E面積的.17、×()2【解題分析】

利用正方形的性質(zhì)結(jié)合銳角三角函數(shù)關(guān)系得出正方形的邊長,進(jìn)而得出變化規(guī)律即可得出答案.【題目詳解】解:∵∠B1C1O=60°,C1O=,∴B1C1=1,∠D1C1E1=30°,∵sin∠D1C1E1=,∴D1E1=,∵B1C1∥B2C2∥B3C3∥…∴60°=∠B1C1O=∠B2C2O=∠B3C3O=…∴B2C2=,B3C3=.故正方形AnBnCnDn的邊長=()n-1.∴B2018C2018=()2.∴D2018E2018=×()2,∴D的縱坐標(biāo)為×()2,故答案為×()2.【題目點撥】此題主要考查了正方形的性質(zhì)以及銳角三角函數(shù)關(guān)系,得出正方形的邊長變化規(guī)律是解題關(guān)鍵18、4【解題分析】試題分析:設(shè)OB的長度為x,則根據(jù)二次函數(shù)的對稱性可得:點B的坐標(biāo)為(x+2,0),點A的坐標(biāo)為(2-x,0),則OB-OA=x+2-(x-2)=4.點睛:本題主要考查的就是二次函數(shù)的性質(zhì).如果二次函數(shù)與x軸的兩個交點坐標(biāo)為(,0)和(,0),則函數(shù)的對稱軸為直線:x=.在解決二次函數(shù)的題目時,我們一定要注意區(qū)分點的坐標(biāo)和線段的長度之間的區(qū)別,如果點在x的正半軸,則點的橫坐標(biāo)就是線段的長度,如果點在x的負(fù)半軸,則點的橫坐標(biāo)的相反數(shù)就是線段的長度.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、解:(1)如圖,△A1B1C1即為所求,C1(2,-2).(2)如圖,△A2BC2即為所求,C2(1,0),△A2BC2的面積:10【解題分析】

分析:(1)根據(jù)網(wǎng)格結(jié)構(gòu),找出點A、B、C向下平移4個單位的對應(yīng)點、、的位置,然后順次連接即可,再根據(jù)平面直角坐標(biāo)系寫出點的坐標(biāo);(2)延長BA到使A=AB,延長BC到,使C=BC,然后連接A2C2即可,再根據(jù)平面直角坐標(biāo)系寫出點的坐標(biāo),利用△B所在的矩形的面積減去四周三個小直角三角形的面積,列式計算即可得解.本題解析:(1)如圖,△A1B1C1即為所求,C1(2,-2)(2)如圖,△B為所求,(1,0),△B的面積:6×4?×2×6?×2×4?×2×4=24?6?4?4=24?14=10,20、(1);(2)①見解析;②;(3)存在點B,使△MBF的周長最?。鱉BF周長的最小值為11,直線l的解析式為.【解題分析】

(1)用待定系數(shù)法將已知兩點的坐標(biāo)代入拋物線解析式即可解答.(2)①由于BC∥y軸,容易看出∠OFC=∠BCF,想證明∠BFC=∠OFC,可轉(zhuǎn)化為求證∠BFC=∠BCF,根據(jù)“等邊對等角”,也就是求證BC=BF,可作BD⊥y軸于點D,設(shè)B(m,),通過勾股定理用表示出的長度,與相等,即可證明.②用表示出點的坐標(biāo),運(yùn)用勾股定理表示出的長度,令,解關(guān)于的一元二次方程即可.(3)求折線或者三角形周長的最小值問題往往需要將某些線段代換轉(zhuǎn)化到一條直線上,再通過“兩點之間線段最短”或者“垂線段最短”等定理尋找最值.本題可過點M作MN⊥x軸于點N,交拋物線于點B1,過點B作BE⊥x軸于點E,連接B1F,通過第(2)問的結(jié)論將△MBF的邊轉(zhuǎn)化為,可以發(fā)現(xiàn),當(dāng)點運(yùn)動到位置時,△MBF周長取得最小值,根據(jù)求平面直角坐標(biāo)系里任意兩點之間的距離的方法代入點與的坐標(biāo)求出的長度,再加上即是△MBF周長的最小值;將點的橫坐標(biāo)代入二次函數(shù)求出,再聯(lián)立與的坐標(biāo)求出的解析式即可.【題目詳解】(1)解:將點(-2,2)和(4,5)分別代入,得:解得:∴拋物線的解析式為:.(2)①證明:過點B作BD⊥y軸于點D,設(shè)B(m,),∵BC⊥x軸,BD⊥y軸,F(xiàn)(0,2)∴BC=,BD=|m|,DF=∴BC=BF∴∠BFC=∠BCF又BC∥y軸,∴∠OFC=∠BCF∴∠BFC=∠OFC∴FC平分∠BFO.②(說明:寫一個給1分)(3)存在點B,使△MBF的周長最小.過點M作MN⊥x軸于點N,交拋物線于點B1,過點B作BE⊥x軸于點E,連接B1F由(2)知B1F=B1N,BF=BE∴△MB1F的周長=MF+MB1+B1F=MF+MB1+B1N=MF+MN△MBF的周長=MF+MB+BF=MF+MB+BE根據(jù)垂線段最短可知:MN<MB+BE∴當(dāng)點B在點B1處時,△MBF的周長最小∵M(jìn)(3,6),F(xiàn)(0,2)∴,MN=6∴△MBF周長的最小值=MF+MN=5+6=11將x=3代入,得:∴B1(3,)將F(0,2)和B1(3,)代入y=kx+b,得:,解得:∴此時直線l的解析式為:.【題目點撥】本題綜合考查了二次函數(shù)與一次函數(shù)的圖象與性質(zhì),等腰三角形的性質(zhì),動點與最值問題等,熟練掌握各個知識點,結(jié)合圖象作出合理輔助線,進(jìn)行適當(dāng)?shù)霓D(zhuǎn)化是解答關(guān)鍵.21、(1)y=;y=x﹣;(2);(1)﹣2<x<0或x>1;【解題分析】

(1)過A作AM⊥x軸于M,根據(jù)勾股定理求出OM,得出A的坐標(biāo),把A得知坐標(biāo)代入反比例函數(shù)的解析式求出解析式,吧B的坐標(biāo)代入求出B的坐標(biāo),吧A、B的坐標(biāo)代入一次函數(shù)的解析式,即可求出解析式.

(2)求出直線AB交y軸的交點坐標(biāo),即可求出OD,根據(jù)三角形面積公式求出即可.

(1)根據(jù)A、B的橫坐標(biāo)結(jié)合圖象即可得出答案.【題目詳解】解:(1)過A作AM⊥x軸于M,則AM=1,OA=,由勾股定理得:OM=1,即A的坐標(biāo)是(1,1),把A的坐標(biāo)代入y=得:k=1,即反比例函數(shù)的解析式是y=.把B(﹣2,n)代入反比例函數(shù)的解析式得:n=﹣,即B的坐標(biāo)是(﹣2,﹣),把A、B的坐標(biāo)代入y=ax+b得:,解得:k=.b=﹣,即一次函數(shù)的解析式是y=x﹣.(2)連接OB,∵y=x﹣,∴當(dāng)x=0時,y=﹣,即OD=,∴△AOB的面積是S△BOD+S△AOD=××2+××1=.(1)一次函數(shù)的值大于反比例函數(shù)的值時x的取值范圍是﹣2<x<0或x>1,故答案為﹣2<x<0或x>1.【題目點撥】本題考查了一次函數(shù)與反比例函數(shù)的交點問題以及用待定系數(shù)法求函數(shù)的解析式,函數(shù)的圖象的應(yīng)用.熟練掌握相關(guān)知識是解題關(guān)鍵.22、(1)一個水瓶40元,一個水杯是8元;(2)當(dāng)10<n<25時,選擇乙商場購買更合算.當(dāng)n>25時,選擇甲商場購買更合算.【解題分析】

(1)設(shè)一個水瓶x元,表示出一個水杯為(48﹣x)元,根據(jù)題意列出方程,求出方程的解即可得到結(jié)果;(2)計算出兩商場得費用,比較即可得到結(jié)果.【題目詳解】解:(1)設(shè)一個水瓶x元,表示出一個水杯為(48﹣x)元,根據(jù)題意得:3x+4(48﹣x)=152,解得:x=40,則一個水瓶40元,一個水杯是8元;(2)甲商場所需費用為(40×5+8n)×80%=160+6.4n乙商場所需費用為5×40+(n﹣5×2)×8=120+8n則∵n>10,且n為整數(shù),∴160+6.4n﹣(120+8n)=40﹣1.6n討論:當(dāng)10<n<25時,40﹣1.6n>0,160+0.64n>120+8n,∴選擇乙商場購買更合算.當(dāng)n>25時,40﹣1.6n<0,即160+0.64n<120+8n,∴選擇甲商場購買更合算.【題目點撥】此題主要考查不等式的應(yīng)用,解題的關(guān)鍵是根據(jù)題意找到等量關(guān)系與不等關(guān)系進(jìn)行列式求解.23、y=x﹣5【解題分析】分析:(1)根據(jù)定義,直接變形得到伴生一次函數(shù)的解析式;(2)求出頂點,代入伴生函數(shù)解析式即可求解;(3)根據(jù)題意得到伴生函數(shù)解析式,根據(jù)P點的坐標(biāo),坐標(biāo)表示出縱坐標(biāo),然后通過PQ與x軸的平行關(guān)系,求得Q點的坐標(biāo),由PQ的長列方程求解即可.詳解:(1)∵二次函數(shù)y=(x﹣1)2﹣4,∴其伴生一次函數(shù)的表達(dá)式為y=(x﹣1)﹣4=x﹣5,故答案為y=x﹣5;(2)∵二次函數(shù)y=(x﹣1)2﹣4,∴頂點坐標(biāo)為(1,﹣4),∵二次函數(shù)y=(x﹣1)2﹣4,∴其伴生一次函數(shù)的表達(dá)式為y=x﹣5,∴當(dāng)x=1時,y=1﹣5=﹣4,∴(1,﹣4)在直線y=x﹣5上,即:二次函數(shù)y=(x﹣1)2﹣4的頂點在其伴生一次函數(shù)的圖象上;(3)∵二次函數(shù)y=m(x﹣1)2﹣4m,∴其伴生一次函數(shù)為y=m(x﹣1)﹣4m=mx﹣5m,∵P點的橫坐標(biāo)為n,(n>2),∴P的縱坐標(biāo)為m(n﹣1)2﹣4m,即:P(n,m(n﹣1)2﹣4m),∵PQ∥x軸,∴Q((n﹣1)2+1,m(n﹣1)2﹣4m),∴PQ=(n﹣1)2+1﹣n,∵線段PQ的長為,∴(n﹣1)2+1﹣n=,∴n=.點睛:此題主要考查了新定義下的函數(shù)關(guān)系式,關(guān)鍵是理解新定義的特點構(gòu)造伴生函數(shù)解析式.24、(1)證明見解析;(2)1.【解題分析】

(1)根據(jù)切線的性質(zhì)和平行線的性質(zhì)解答即可;(2)根據(jù)直角三角形的性質(zhì)和三角函數(shù)解答即可.【題目詳解】(1)連接OD,∵OD=OE,∴∠ODE=∠OED.∵直線BC為⊙O的切線,∴OD⊥BC.∴∠ODB=90°.∵∠ACB=90°,∴OD∥AC.∴∠ODE=∠F.∴∠OED=∠F.∴AE=AF;(2)連接AD,∵AE是⊙O的直徑,∴∠ADE=90°,∵AE=AF,∴DF=DE=3,∵∠ACB=90°,∴∠DAF+∠F=90°,∠CDF+∠F=90°,∴∠DAF=∠CDF=∠BDE,在Rt△ADF中,=sin∠DAF=sin∠BDE=,∴AF=3DF=9,在Rt△CDF中,=sin∠CDF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論