2024屆四川省巴中學(xué)市恩陽區(qū)中考聯(lián)考數(shù)學(xué)試題含解析_第1頁
2024屆四川省巴中學(xué)市恩陽區(qū)中考聯(lián)考數(shù)學(xué)試題含解析_第2頁
2024屆四川省巴中學(xué)市恩陽區(qū)中考聯(lián)考數(shù)學(xué)試題含解析_第3頁
2024屆四川省巴中學(xué)市恩陽區(qū)中考聯(lián)考數(shù)學(xué)試題含解析_第4頁
2024屆四川省巴中學(xué)市恩陽區(qū)中考聯(lián)考數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024學(xué)年四川省巴中學(xué)市恩陽區(qū)中考聯(lián)考數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖所示的圖形為四位同學(xué)畫的數(shù)軸,其中正確的是()A. B.C. D.2.如圖,在菱形ABCD中,AB=5,∠BCD=120°,則△ABC的周長等于()A.20 B.15 C.10 D.53.關(guān)于x的一元二次方程x2﹣2x+k+2=0有實(shí)數(shù)根,則k的取值范圍在數(shù)軸上表示正確的是()A. B.C. D.4.若直線y=kx+b圖象如圖所示,則直線y=?bx+k的圖象大致是()A. B. C. D.5.下列事件中必然發(fā)生的事件是()A.一個(gè)圖形平移后所得的圖形與原來的圖形不全等B.不等式的兩邊同時(shí)乘以一個(gè)數(shù),結(jié)果仍是不等式C.200件產(chǎn)品中有5件次品,從中任意抽取6件,至少有一件是正品D.隨意翻到一本書的某頁,這頁的頁碼一定是偶數(shù)6.實(shí)數(shù)在數(shù)軸上的點(diǎn)的位置如圖所示,則下列不等關(guān)系正確的是()A.a(chǎn)+b>0 B.a(chǎn)-b<0 C.<0 D.>7.下列分式中,最簡分式是()A. B. C. D.8.如圖,已知l1∥l2,∠A=40°,∠1=60°,則∠2的度數(shù)為()A.40° B.60° C.80° D.100°9.如圖,在矩形紙片ABCD中,已知AB=,BC=1,點(diǎn)E在邊CD上移動(dòng),連接AE,將多邊形ABCE沿直線AE折疊,得到多邊形AFGE,點(diǎn)B、C的對(duì)應(yīng)點(diǎn)分別為點(diǎn)F、G.在點(diǎn)E從點(diǎn)C移動(dòng)到點(diǎn)D的過程中,則點(diǎn)F運(yùn)動(dòng)的路徑長為()A.π B.π C.π D.π10.下列計(jì)算或化簡正確的是()A. B.C. D.11.若(x﹣1)0=1成立,則x的取值范圍是()A.x=﹣1 B.x=1 C.x≠0 D.x≠112.若拋物線y=x2-(m-3)x-m能與x軸交,則兩交點(diǎn)間的距離最值是()A.最大值2, B.最小值2 C.最大值2 D.最小值2二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.若n邊形的內(nèi)角和是它的外角和的2倍,則n=.14.在臨桂新區(qū)建設(shè)中,需要修一段全長2400m的道路,為了盡量減少施工對(duì)縣城交通工具所造成的影響,實(shí)際工作效率比原計(jì)劃提高了20%,結(jié)果提前8天完成任務(wù),求原計(jì)劃每天修路的長度.若設(shè)原計(jì)劃每天修路xm,則根據(jù)題意可得方程.15.已知關(guān)于x,y的二元一次方程組的解互為相反數(shù),則k的值是_________.16.已知點(diǎn)P(a,b)在反比例函數(shù)y=的圖象上,則ab=_____.17.分解因式:8x2-8xy+2y2=_________________________.18.如圖,已知圓柱底面的周長為,圓柱高為,在圓柱的側(cè)面上,過點(diǎn)和點(diǎn)嵌有一圈金屬絲,則這圈金屬絲的周長最小為______.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某校開展“我最喜愛的一項(xiàng)體育活動(dòng)”調(diào)查,要求每名學(xué)生必選且只能選一項(xiàng),現(xiàn)隨機(jī)抽查了m名學(xué)生,并將其結(jié)果繪制成如下不完整的條形圖和扇形圖.請結(jié)合以上信息解答下列問題:m=;請補(bǔ)全上面的條形統(tǒng)計(jì)圖;在圖2中,“乒乓球”所對(duì)應(yīng)扇形的圓心角的度數(shù)為;已知該校共有1200名學(xué)生,請你估計(jì)該校約有名學(xué)生最喜愛足球活動(dòng).20.(6分)已知四邊形ABCD是⊙O的內(nèi)接四邊形,AC是⊙O的直徑,DE⊥AB,垂足為E(1)延長DE交⊙O于點(diǎn)F,延長DC,F(xiàn)B交于點(diǎn)P,如圖1.求證:PC=PB;(2)過點(diǎn)B作BG⊥AD,垂足為G,BG交DE于點(diǎn)H,且點(diǎn)O和點(diǎn)A都在DE的左側(cè),如圖2.若AB=,DH=1,∠OHD=80°,求∠BDE的大?。?1.(6分)實(shí)踐體驗(yàn):(1)如圖1:四邊形ABCD是矩形,試在AD邊上找一點(diǎn)P,使△BCP為等腰三角形;(2)如圖2:矩形ABCD中,AB=13,AD=12,點(diǎn)E在AB邊上,BE=3,點(diǎn)P是矩形ABCD內(nèi)或邊上一點(diǎn),且PE=5,點(diǎn)Q是CD邊上一點(diǎn),求PQ得最值;問題解決:(3)如圖3,四邊形ABCD中,AD∥BC,∠C=90°,AD=3,BC=6,DC=4,點(diǎn)E在AB邊上,BE=2,點(diǎn)P是四邊形ABCD內(nèi)或邊上一點(diǎn),且PE=2,求四邊形PADC面積的最值.22.(8分)如圖,BD是矩形ABCD的一條對(duì)角線.(1)作BD的垂直平分線EF,分別交AD、BC于點(diǎn)E、F,垂足為點(diǎn)O.(要求用尺規(guī)作圖,保留作圖痕跡,不要求寫作法);(2)求證:DE=BF.23.(8分)的除以20與18的差,商是多少?24.(10分)如圖,△ABC與△A1B1C1是位似圖形.(1)在網(wǎng)格上建立平面直角坐標(biāo)系,使得點(diǎn)A的坐標(biāo)為(-6,-1),點(diǎn)C1的坐標(biāo)為(-3,2),則點(diǎn)B的坐標(biāo)為____________;(2)以點(diǎn)A為位似中心,在網(wǎng)格圖中作△AB2C2,使△AB2C2和△ABC位似,且位似比為1∶2;(3)在圖上標(biāo)出△ABC與△A1B1C1的位似中心P,并寫出點(diǎn)P的坐標(biāo)為________,計(jì)算四邊形ABCP的周長為_______.25.(10分)如圖,已知點(diǎn)B、E、C、F在一條直線上,AB=DF,AC=DE,∠A=∠D求證:AC∥DE;若BF=13,EC=5,求BC的長.26.(12分)﹣(﹣1)2018+﹣()﹣127.(12分)計(jì)算:2﹣1+|﹣|++2cos30°

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解題分析】

根據(jù)數(shù)軸三要素:原點(diǎn)、正方向、單位長度進(jìn)行判斷.【題目詳解】A選項(xiàng)圖中無原點(diǎn),故錯(cuò)誤;B選項(xiàng)圖中單位長度不統(tǒng)一,故錯(cuò)誤;C選項(xiàng)圖中無正方向,故錯(cuò)誤;D選項(xiàng)圖形包含數(shù)軸三要素,故正確;故選D.【題目點(diǎn)撥】本題考查數(shù)軸的畫法,熟記數(shù)軸三要素是解題的關(guān)鍵.2、B【解題分析】∵ABCD是菱形,∠BCD=120°,∴∠B=60°,BA=BC.∴△ABC是等邊三角形.∴△ABC的周長=3AB=1.故選B3、C【解題分析】

由一元二次方程有實(shí)數(shù)根可知△≥0,即可得出關(guān)于k的一元一次不等式,解之即可得出k的取值范圍.【題目詳解】∵關(guān)于x的一元二次方程x2?2x+k+2=0有實(shí)數(shù)根,∴△=(?2)2?4(k+2)?0,解得:k??1,在數(shù)軸上表示為:故選C.【題目點(diǎn)撥】本題考查了一元二次方程根的判別式.根據(jù)一元二次方程根的情況利用根的判別式列出不等式是解題的關(guān)鍵.4、A【解題分析】

根據(jù)一次函數(shù)y=kx+b的圖象可知k>1,b<1,再根據(jù)k,b的取值范圍確定一次函數(shù)y=?bx+k圖象在坐標(biāo)平面內(nèi)的位置關(guān)系,即可判斷.【題目詳解】解:∵一次函數(shù)y=kx+b的圖象可知k>1,b<1,

∴-b>1,∴一次函數(shù)y=?bx+k的圖象過一、二、三象限,與y軸的正半軸相交,故選:A.【題目點(diǎn)撥】本題考查了一次函數(shù)的圖象與系數(shù)的關(guān)系.函數(shù)值y隨x的增大而減小?k<1;函數(shù)值y隨x的增大而增大?k>1;一次函數(shù)y=kx+b圖象與y軸的正半軸相交?b>1,一次函數(shù)y=kx+b圖象與y軸的負(fù)半軸相交?b<1,一次函數(shù)y=kx+b圖象過原點(diǎn)?b=1.5、C【解題分析】

直接利用隨機(jī)事件、必然事件、不可能事件分別分析得出答案.【題目詳解】A、一個(gè)圖形平移后所得的圖形與原來的圖形不全等,是不可能事件,故此選項(xiàng)錯(cuò)誤;B、不等式的兩邊同時(shí)乘以一個(gè)數(shù),結(jié)果仍是不等式,是隨機(jī)事件,故此選項(xiàng)錯(cuò)誤;C、200件產(chǎn)品中有5件次品,從中任意抽取6件,至少有一件是正品,是必然事件,故此選項(xiàng)正確;D、隨意翻到一本書的某頁,這頁的頁碼一定是偶數(shù),是隨機(jī)事件,故此選項(xiàng)錯(cuò)誤;故選C.【題目點(diǎn)撥】此題主要考查了隨機(jī)事件、必然事件、不可能事件,正確把握相關(guān)定義是解題關(guān)鍵.6、C【解題分析】

根據(jù)點(diǎn)在數(shù)軸上的位置,可得a,b的關(guān)系,根據(jù)有理數(shù)的運(yùn)算,可得答案.【題目詳解】解:由數(shù)軸,得b<-1,0<a<1.A、a+b<0,故A錯(cuò)誤;B、a-b>0,故B錯(cuò)誤;C、<0,故C符合題意;D、a2<1<b2,故D錯(cuò)誤;故選C.【題目點(diǎn)撥】本題考查了實(shí)數(shù)與數(shù)軸,利用點(diǎn)在數(shù)軸上的位置得出b<-1,0<a<1是解題關(guān)鍵,又利用了有理數(shù)的運(yùn)算.7、A【解題分析】試題分析:選項(xiàng)A為最簡分式;選項(xiàng)B化簡可得原式==;選項(xiàng)C化簡可得原式==;選項(xiàng)D化簡可得原式==,故答案選A.考點(diǎn):最簡分式.8、D【解題分析】

根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠3=∠1,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和列式計(jì)算即可得解.【題目詳解】解:∵l1∥l2,∴∠3=∠1=60°,∴∠2=∠A+∠3=40°+60°=100°.故選D.【題目點(diǎn)撥】本題考查了平行線的性質(zhì),三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),熟記性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.9、D【解題分析】

點(diǎn)F的運(yùn)動(dòng)路徑的長為弧FF'的長,求出圓心角、半徑即可解決問題.【題目詳解】如圖,點(diǎn)F的運(yùn)動(dòng)路徑的長為弧FF'的長,在Rt△ABC中,∵tan∠BAC=,∴∠BAC=30°,∵∠CAF=∠BAC=30°,∴∠BAF=60°,∴∠FAF′=120°,∴弧FF'的長=.故選D.【題目點(diǎn)撥】本題考查了矩形的性質(zhì)、特殊角的三角函數(shù)值、含30°角的直角三角形的性質(zhì)、弧長公式等知識(shí),解題的關(guān)鍵是判斷出點(diǎn)F運(yùn)動(dòng)的路徑.10、D【解題分析】解:A.不是同類二次根式,不能合并,故A錯(cuò)誤;B.

,故B錯(cuò)誤;C.,故C錯(cuò)誤;D.,正確.故選D.11、D【解題分析】試題解析:由題意可知:x-1≠0,

x≠1

故選D.12、D【解題分析】設(shè)拋物線與x軸的兩交點(diǎn)間的橫坐標(biāo)分別為:x1,x2,

由韋達(dá)定理得:x1+x2=m-3,x1?x2=-m,則兩交點(diǎn)間的距離d=|x1-x2|==,∴m=1時(shí),dmin=2.故選D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、6【解題分析】此題涉及多邊形內(nèi)角和和外角和定理多邊形內(nèi)角和=180(n-2),外角和=360o所以,由題意可得180(n-2)=2×360o解得:n=614、.【解題分析】試題解析:∵原計(jì)劃用的時(shí)間為:實(shí)際用的時(shí)間為:∴可列方程為:故答案為15、-1【解題分析】

∵關(guān)于x,y的二元一次方程組的解互為相反數(shù),∴x=-y③,把③代入②得:-y+2y=-1,解得y=-1,所以x=1,把x=1,y=-1代入①得2-3=k,即k=-1.故答案為-116、2【解題分析】【分析】接把點(diǎn)P(a,b)代入反比例函數(shù)y=即可得出結(jié)論.【題目詳解】∵點(diǎn)P(a,b)在反比例函數(shù)y=的圖象上,∴b=,∴ab=2,故答案為:2.【題目點(diǎn)撥】本題考查的是反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn),熟知反比例函數(shù)圖象上各點(diǎn)的坐標(biāo)一定適合此函數(shù)的解析式是解答此題的關(guān)鍵.17、1【解題分析】

提取公因式1,再對(duì)余下的多項(xiàng)式利用完全平方公式繼續(xù)分解.完全平方公式:a1±1ab+b1=(a±b)1.【題目詳解】8x1-8xy+1y2=1(4x1-4xy+y2)=1(1x-y)1.故答案為:1(1x-y)1【題目點(diǎn)撥】此題考查的是提取公因式法和公式法分解因式,本題關(guān)鍵在于提取公因式可以利用完全平方公式進(jìn)行二次因式分解.18、【解題分析】

要求絲線的長,需將圓柱的側(cè)面展開,進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果,在求線段長時(shí),根據(jù)勾股定理計(jì)算即可.【題目詳解】解:如圖,把圓柱的側(cè)面展開,得到矩形,則這圈金屬絲的周長最小為2AC的長度.

∵圓柱底面的周長為4dm,圓柱高為2dm,

∴AB=2dm,BC=BC′=2dm,

∴AC2=22+22=8,

∴AC=2dm.

∴這圈金屬絲的周長最小為2AC=4dm.

故答案為:4dm【題目點(diǎn)撥】本題考查了平面展開-最短路徑問題,圓柱的側(cè)面展開圖是一個(gè)矩形,此矩形的長等于圓柱底面周長,高等于圓柱的高,本題把圓柱的側(cè)面展開成矩形,“化曲面為平面”是解題的關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)150,(2)36°,(3)1.【解題分析】

(1)根據(jù)圖中信息列式計(jì)算即可;(2)求得“足球“的人數(shù)=150×20%=30人,補(bǔ)全上面的條形統(tǒng)計(jì)圖即可;(3)360°×乒乓球”所占的百分比即可得到結(jié)論;(4)根據(jù)題意計(jì)算即可.【題目詳解】(1)m=21÷14%=150,(2)“足球“的人數(shù)=150×20%=30人,補(bǔ)全上面的條形統(tǒng)計(jì)圖如圖所示;(3)在圖2中,“乒乓球”所對(duì)應(yīng)扇形的圓心角的度數(shù)為360°×=36°;(4)1200×20%=1人,答:估計(jì)該校約有1名學(xué)生最喜愛足球活動(dòng).故答案為150,36°,1.【題目點(diǎn)撥】本題考查了條形統(tǒng)計(jì)圖,觀察條形統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖獲得有效信息是解題關(guān)鍵.20、(1)詳見解析;(2)∠BDE=20°.【解題分析】

(1)根據(jù)已知條件易證BC∥DF,根據(jù)平行線的性質(zhì)可得∠F=∠PBC;再利用同角的補(bǔ)角相等證得∠F=∠PCB,所以∠PBC=∠PCB,由此即可得出結(jié)論;(2)連接OD,先證明四邊形DHBC是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得BC=DH=1,在Rt△ABC中,用銳角三角函數(shù)求出∠ACB=60°,進(jìn)而判斷出DH=OD,求出∠ODH=20°,再求得∠NOH=∠DOC=40°,根據(jù)三角形外角的性質(zhì)可得∠OAD=∠DOC=20°,最后根據(jù)圓周角定理及平行線的性質(zhì)即可求解.【題目詳解】(1)如圖1,∵AC是⊙O的直徑,∴∠ABC=90°,∵DE⊥AB,∴∠DEA=90°,∴∠DEA=∠ABC,∴BC∥DF,∴∠F=∠PBC,∵四邊形BCDF是圓內(nèi)接四邊形,∴∠F+∠DCB=180°,∵∠PCB+∠DCB=180°,∴∠F=∠PCB,∴∠PBC=∠PCB,∴PC=PB;(2)如圖2,連接OD,∵AC是⊙O的直徑,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥DC,∵BC∥DE,∴四邊形DHBC是平行四邊形,∴BC=DH=1,在Rt△ABC中,AB=,tan∠ACB=,∴∠ACB=60°,∴BC=AC=OD,∴DH=OD,在等腰△DOH中,∠DOH=∠OHD=80°,∴∠ODH=20°,設(shè)DE交AC于N,∵BC∥DE,∴∠ONH=∠ACB=60°,∴∠NOH=180°﹣(∠ONH+∠OHD)=40°,∴∠DOC=∠DOH﹣∠NOH=40°,∵OA=OD,∴∠OAD=∠DOC=20°,∴∠CBD=∠OAD=20°,∵BC∥DE,∴∠BDE=∠CBD=20°.【題目點(diǎn)撥】本題考查了圓內(nèi)接四邊形的性質(zhì)、圓周角定理、平行四邊形的判定與性質(zhì)、等腰三角形的性質(zhì)等知識(shí)點(diǎn),解決第(2)問,作出輔助線,求得∠ODH=20°是解決本題的關(guān)鍵.21、(1)見解析;(2)PQmin=7,PQmax=13;(3)Smin=,Smax=18.【解題分析】

(1)根據(jù)全等三角形判定定理求解即可.(2)以E為圓心,以5為半徑畫圓,①當(dāng)E、P、Q三點(diǎn)共線時(shí)最PQ最小,②當(dāng)P點(diǎn)在位置時(shí)PQ最大,分類討論即可求解.(3)以E為圓心,以2為半徑畫圓,分類討論出P點(diǎn)在位置時(shí),四邊形PADC面積的最值即可.【題目詳解】(1)當(dāng)P為AD中點(diǎn)時(shí),,△BCP為等腰三角形.(2)以E為圓心,以5為半徑畫圓①當(dāng)E、P、Q三點(diǎn)共線時(shí)最PQ最小,PQ的最小值是12-5=7.②當(dāng)P點(diǎn)在位置時(shí)PQ最大,PQ的最大值是(3)以E為圓心,以2為半徑畫圓.當(dāng)點(diǎn)p為位置時(shí),四邊形PADC面積最大.當(dāng)點(diǎn)p為位置時(shí),四邊形PADC最小=四邊形+三角形=.【題目點(diǎn)撥】本題主要考查了等腰三角形性質(zhì),直線,面積最值問題,數(shù)形結(jié)合思想是解題關(guān)鍵.22、(1)作圖見解析;(2)證明見解析;【解題分析】

(1)分別以B、D為圓心,以大于BD的長為半徑四弧交于兩點(diǎn),過兩點(diǎn)作直線即可得到線段BD的垂直平分線;(2)利用垂直平分線證得△DEO≌△BFO即可證得結(jié)論.【題目詳解】解:(1)如圖:(2)∵四邊形ABCD為矩形,∴AD∥BC,∴∠ADB=∠CBD,∵EF垂直平分線段BD,∴BO=DO,在△DEO和三角形BFO中,,∴△DEO≌△BFO(ASA),∴DE=BF.考點(diǎn):1.作圖—基本作圖;2.線段垂直平分線的性質(zhì);3.矩形的性質(zhì).23、【解題分析】

根據(jù)題意可用乘的積除以20與18的差,所得的商就是所求的數(shù),列式解答即可.【題目詳解】解:×÷(20﹣18)【題目點(diǎn)撥】考查有理數(shù)的混合運(yùn)算,列出式子是解題的關(guān)鍵.24、(1)作圖見解析;點(diǎn)B的坐標(biāo)為:(﹣2,﹣5);(2)作圖見解析;(3)【解題分析】分析:(1)直接利用已知點(diǎn)位置得出B點(diǎn)坐

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論