江蘇省蘇州昆山、太倉(cāng)市市級(jí)名校2024屆中考數(shù)學(xué)最后沖刺模擬試卷含解析_第1頁(yè)
江蘇省蘇州昆山、太倉(cāng)市市級(jí)名校2024屆中考數(shù)學(xué)最后沖刺模擬試卷含解析_第2頁(yè)
江蘇省蘇州昆山、太倉(cāng)市市級(jí)名校2024屆中考數(shù)學(xué)最后沖刺模擬試卷含解析_第3頁(yè)
江蘇省蘇州昆山、太倉(cāng)市市級(jí)名校2024屆中考數(shù)學(xué)最后沖刺模擬試卷含解析_第4頁(yè)
江蘇省蘇州昆山、太倉(cāng)市市級(jí)名校2024屆中考數(shù)學(xué)最后沖刺模擬試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江蘇省蘇州昆山、太倉(cāng)市市級(jí)名校2024年中考數(shù)學(xué)最后沖刺模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,在中,.點(diǎn)是的中點(diǎn),連結(jié),過(guò)點(diǎn)作,分別交于點(diǎn),與過(guò)點(diǎn)且垂直于的直線相交于點(diǎn),連結(jié).給出以下四個(gè)結(jié)論:①;②點(diǎn)是的中點(diǎn);③;④,其中正確的個(gè)數(shù)是()A.4 B.3 C.2 D.12.用五個(gè)完全相同的小正方體組成如圖所示的立體圖形,從正面看到的圖形是()A. B. C. D.3.2022年冬奧會(huì),北京、延慶、張家口三個(gè)賽區(qū)共25個(gè)場(chǎng)館,北京共12個(gè),其中11個(gè)為2008年奧運(yùn)會(huì)遺留場(chǎng)館,唯一一個(gè)新建的場(chǎng)館是國(guó)家速滑館,可容納12000人觀賽,將12000用科學(xué)記數(shù)法表示應(yīng)為()A.12×10 B.1.2×10 C.1.2×10 D.0.12×104.如圖,直線a∥b,點(diǎn)A在直線b上,∠BAC=100°,∠BAC的兩邊與直線a分別交于B、C兩點(diǎn),若∠2=32°,則∠1的大小為()A.32° B.42° C.46° D.48°5.計(jì)算(x-2)(x+5)的結(jié)果是A.x2+3x+7 B.x2+3x+10 C.x2+3x-10 D.x2-3x-106.如圖,等邊△ABC的邊長(zhǎng)為1cm,D、E分別AB、AC是上的點(diǎn),將△ADE沿直線DE折疊,點(diǎn)A落在點(diǎn)A′處,且點(diǎn)A′在△ABC外部,則陰影部分的周長(zhǎng)為()cmA.1 B.2 C.3 D.47.如果實(shí)數(shù)a=,且a在數(shù)軸上對(duì)應(yīng)點(diǎn)的位置如圖所示,其中正確的是()A.B.C.D.8.下列圖形中,是軸對(duì)稱圖形但不是中心對(duì)稱圖形的是()A. B. C. D.9.今年我市計(jì)劃擴(kuò)大城區(qū)綠地面積,現(xiàn)有一塊長(zhǎng)方形綠地,它的短邊長(zhǎng)為60m,若將短邊增長(zhǎng)到長(zhǎng)邊相等(長(zhǎng)邊不變),使擴(kuò)大后的棣地的形狀是正方形,則擴(kuò)大后的綠地面積比原來(lái)增加1600,設(shè)擴(kuò)大后的正方形綠地邊長(zhǎng)為xm,下面所列方程正確的是()A.x(x-60)=1600B.x(x+60)=1600C.60(x+60)=1600D.60(x-60)=160010.在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(﹣1,0),點(diǎn)B的坐標(biāo)是(3,0),在y軸的正半軸上取一點(diǎn)C,使A、B、C三點(diǎn)確定一個(gè)圓,且使AB為圓的直徑,則點(diǎn)C的坐標(biāo)是()A.(0,) B.(,0) C.(0,2) D.(2,0)二、填空題(共7小題,每小題3分,滿分21分)11.如圖,已知正方形ABCD的邊長(zhǎng)為4,⊙B的半徑為2,點(diǎn)P是⊙B上的一個(gè)動(dòng)點(diǎn),則PD﹣PC的最大值為_____.12.在Rt△ABC中,∠C=90°,sinA=,那么cosA=________.13.填在下面各正方形中的四個(gè)數(shù)之間都有相同的規(guī)律,根據(jù)這種規(guī)律,m的值是.14.如圖,圓錐底面圓心為O,半徑OA=1,頂點(diǎn)為P,將圓錐置于平面上,若保持頂點(diǎn)P位置不變,將圓錐順時(shí)針滾動(dòng)三周后點(diǎn)A恰好回到原處,則圓錐的高OP=_____.15.如圖,矩形ABCD中,AB=3,對(duì)角線AC,BD相交于點(diǎn)O,AE垂直平分OB于點(diǎn)E,則AD的長(zhǎng)為____________.16.如圖,在正方形ABCD中,AD=5,點(diǎn)E,F(xiàn)是正方形ABCD內(nèi)的兩點(diǎn),且AE=FC=3,BE=DF=4,則EF的長(zhǎng)為__________.17.為了節(jié)約用水,某市改進(jìn)居民用水設(shè)施,在2017年幫助居民累計(jì)節(jié)約用水305000噸,將數(shù)字305000用科學(xué)記數(shù)法表示為________.三、解答題(共7小題,滿分69分)18.(10分)如圖,過(guò)點(diǎn)A(2,0)的兩條直線,分別交y軸于B,C,其中點(diǎn)B在原點(diǎn)上方,點(diǎn)C在原點(diǎn)下方,已知AB=.求點(diǎn)B的坐標(biāo);若△ABC的面積為4,求的解析式.19.(5分)如圖1,在等腰△ABC中,AB=AC,點(diǎn)D,E分別為BC,AB的中點(diǎn),連接AD.在線段AD上任取一點(diǎn)P,連接PB,PE.若BC=4,AD=6,設(shè)PD=x(當(dāng)點(diǎn)P與點(diǎn)D重合時(shí),x的值為0),PB+PE=y.小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.下面是小明的探究過(guò)程,請(qǐng)補(bǔ)充完整:(1)通過(guò)取點(diǎn)、畫圖、計(jì)算,得到了x與y的幾組值,如下表:x0123456y5.24.24.65.97.69.5說(shuō)明:補(bǔ)全表格時(shí),相關(guān)數(shù)值保留一位小數(shù).(參考數(shù)據(jù):≈1.414,≈1.732,≈2.236)(2)建立平面直角坐標(biāo)系(圖2),描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;(3)求函數(shù)y的最小值(保留一位小數(shù)),此時(shí)點(diǎn)P在圖1中的什么位置.20.(8分)如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過(guò)O,A兩點(diǎn),且頂點(diǎn)在BC邊上,對(duì)稱軸交BE于點(diǎn)F,點(diǎn)D,E的坐標(biāo)分別為(3,0),(0,1).(1)求拋物線的解析式;(2)猜想△EDB的形狀并加以證明;(3)點(diǎn)M在對(duì)稱軸右側(cè)的拋物線上,點(diǎn)N在x軸上,請(qǐng)問(wèn)是否存在以點(diǎn)A,F(xiàn),M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.21.(10分)如圖,在△ABC中,CD⊥AB于點(diǎn)D,tanA=2cos∠BCD,(1)求證:BC=2AD;(2)若cosB=,AB=10,求CD的長(zhǎng).22.(10分)如圖,已知A,B兩點(diǎn)在數(shù)軸上,點(diǎn)A表示的數(shù)為-10,OB=3OA,點(diǎn)M以每秒3個(gè)單位長(zhǎng)度的速度從點(diǎn)A向右運(yùn)動(dòng).點(diǎn)N以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)O向右運(yùn)動(dòng)(點(diǎn)M、點(diǎn)N同時(shí)出發(fā))數(shù)軸上點(diǎn)B對(duì)應(yīng)的數(shù)是______.經(jīng)過(guò)幾秒,點(diǎn)M、點(diǎn)N分別到原點(diǎn)O的距離相等?23.(12分)如圖:求作一點(diǎn)P,使,并且使點(diǎn)P到的兩邊的距離相等.24.(14分)如圖,在Rt△ABC與Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于點(diǎn)G,過(guò)點(diǎn)A作AE∥DB交CB的延長(zhǎng)線于點(diǎn)E,過(guò)點(diǎn)B作BF∥CA交DA的延長(zhǎng)線于點(diǎn)F,AE,BF相交于點(diǎn)H.圖中有若干對(duì)三角形是全等的,請(qǐng)你任選一對(duì)進(jìn)行證明;(不添加任何輔助線)證明:四邊形AHBG是菱形;若使四邊形AHBG是正方形,還需在Rt△ABC的邊長(zhǎng)之間再添加一個(gè)什么條件?請(qǐng)你寫出這個(gè)條件.(不必證明)

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解題分析】

用特殊值法,設(shè)出等腰直角三角形直角邊的長(zhǎng),證明△CDB∽△BDE,求出相關(guān)線段的長(zhǎng);易證△GAB≌△DBC,求出相關(guān)線段的長(zhǎng);再證AG∥BC,求出相關(guān)線段的長(zhǎng),最后求出△ABC和△BDF的面積,即可作出選擇.【題目詳解】解:由題意知,△ABC是等腰直角三角形,設(shè)AB=BC=2,則AC=2,∵點(diǎn)D是AB的中點(diǎn),∴AD=BD=1,在Rt△DBC中,DC=,(勾股定理)∵BG⊥CD,∴∠DEB=∠ABC=90°,又∵∠CDB=∠BDE,∴△CDB∽△BDE,∴∠DBE=∠DCB,,即∴DE=,BE=,在△GAB和△DBC中,∴△GAB≌△DBC(ASA)∴AG=DB=1,BG=CD=,∵∠GAB+∠ABC=180°,∴AG∥BC,∴△AGF∽△CBF,∴,且有AB=BC,故①正確,∵GB=,AC=2,∴AF==,故③正確,GF=,F(xiàn)E=BG﹣GF﹣BE=,故②錯(cuò)誤,S△ABC=AB?AC=2,S△BDF=BF?DE=××=,故④正確.故選B.【題目點(diǎn)撥】本題考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)以及等腰直角三角形的相關(guān)性質(zhì),中等難度,注意合理的運(yùn)用特殊值法是解題關(guān)鍵.2、A【解題分析】從正面看第一層是三個(gè)小正方形,第二層左邊一個(gè)小正方形,故選:A.3、B【解題分析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【題目詳解】數(shù)據(jù)12000用科學(xué)記數(shù)法表示為1.2×104,故選:B.【題目點(diǎn)撥】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.4、D【解題分析】

根據(jù)平行線的性質(zhì)與對(duì)頂角的性質(zhì)求解即可.【題目詳解】∵a∥b,∴∠BCA=∠2,∵∠BAC=100°,∠2=32°∴∠CBA=180°-∠BAC-∠BCA=180°-100°-32°=48°.∴∠1=∠CBA=48°.故答案選D.【題目點(diǎn)撥】本題考查了平行線的性質(zhì),解題的關(guān)鍵是熟練的掌握平行線的性質(zhì)與對(duì)頂角的性質(zhì).5、C【解題分析】

根據(jù)多項(xiàng)式乘以多項(xiàng)式的法則進(jìn)行計(jì)算即可.【題目詳解】x-2x+5故選:C.【題目點(diǎn)撥】考查多項(xiàng)式乘以多項(xiàng)式,掌握多項(xiàng)式乘以多項(xiàng)式的運(yùn)算法則是解題的關(guān)鍵.6、C【解題分析】

由題意得到DA′=DA,EA′=EA,經(jīng)分析判斷得到陰影部分的周長(zhǎng)等于△ABC的周長(zhǎng)即可解決問(wèn)題.【題目詳解】如圖,由題意得:DA′=DA,EA′=EA,∴陰影部分的周長(zhǎng)=DA′+EA′+DB+CE+BG+GF+CF=(DA+BD)+(BG+GF+CF)+(AE+CE)=AB+BC+AC=1+1+1=3(cm)故選C.【題目點(diǎn)撥】本題考查了等邊三角形的性質(zhì)以及折疊的問(wèn)題,折疊問(wèn)題的實(shí)質(zhì)是“軸對(duì)稱”,解題關(guān)鍵是找出經(jīng)軸對(duì)稱變換所得的等量關(guān)系.7、C【解題分析】分析:估計(jì)的大小,進(jìn)而在數(shù)軸上找到相應(yīng)的位置,即可得到答案.詳解:由被開方數(shù)越大算術(shù)平方根越大,即故選C.點(diǎn)睛:考查了實(shí)數(shù)與數(shù)軸的的對(duì)應(yīng)關(guān)系,以及估算無(wú)理數(shù)的大小,解決本題的關(guān)鍵是估計(jì)的大小.8、A【解題分析】A.是軸對(duì)稱圖形不是中心對(duì)稱圖形,正確;B.是軸對(duì)稱圖形也是中心對(duì)稱圖形,錯(cuò)誤;C.是中心對(duì)稱圖形不是軸對(duì)稱圖形,錯(cuò)誤;D.是軸對(duì)稱圖形也是中心對(duì)稱圖形,錯(cuò)誤,故選A.【題目點(diǎn)撥】本題考查軸對(duì)稱圖形與中心對(duì)稱圖形,正確地識(shí)別是解題的關(guān)鍵.9、A【解題分析】試題分析:根據(jù)題意可得擴(kuò)建的部分相當(dāng)于一個(gè)長(zhǎng)方形,這個(gè)長(zhǎng)方形的長(zhǎng)和寬分別為x米和(x-60)米,根據(jù)長(zhǎng)方形的面積計(jì)算法則列出方程.考點(diǎn):一元二次方程的應(yīng)用.10、A【解題分析】

直接根據(jù)△AOC∽△COB得出OC2=OA?OB,即可求出OC的長(zhǎng),即可得出C點(diǎn)坐標(biāo).【題目詳解】如圖,連結(jié)AC,CB.

依△AOC∽△COB的結(jié)論可得:OC2=OAOB,即OC2=1×3=3,解得:OC=或?(負(fù)數(shù)舍去),故C點(diǎn)的坐標(biāo)為(0,).故答案選:A.【題目點(diǎn)撥】本題考查了坐標(biāo)與圖形性質(zhì),解題的關(guān)鍵是熟練的掌握坐標(biāo)與圖形的性質(zhì).二、填空題(共7小題,每小題3分,滿分21分)11、1【解題分析】分析:由PD?PC=PD?PG≤DG,當(dāng)點(diǎn)P在DG的延長(zhǎng)線上時(shí),PD?PC的值最大,最大值為DG=1.詳解:在BC上取一點(diǎn)G,使得BG=1,如圖,∵,,∴,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴,∴PG=PC,當(dāng)點(diǎn)P在DG的延長(zhǎng)線上時(shí),PD?PC的值最大,最大值為DG==1.故答案為1點(diǎn)睛:本題考查圓綜合題、正方形的性質(zhì)、相似三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)構(gòu)建相似三角形解決問(wèn)題,學(xué)會(huì)用轉(zhuǎn)化的思想思考問(wèn)題,把問(wèn)題轉(zhuǎn)化為兩點(diǎn)之間線段最短解決,題目比較難,屬于中考?jí)狠S題.12、【解題分析】∵Rt△ABC中,∠C=90°,∴sinA=,∵sinA=,∴c=2a,∴b=,∴cosA=,故答案為.13、2【解題分析】試題分析:分析前三個(gè)正方形可知,規(guī)律為右上和左下兩個(gè)數(shù)的積減左上的數(shù)等于右下的數(shù),且左上,左下,右上三個(gè)數(shù)是相鄰的偶數(shù).因此,圖中陰影部分的兩個(gè)數(shù)分別是左下是12,右上是1.解:分析可得圖中陰影部分的兩個(gè)數(shù)分別是左下是12,右上是1,則m=12×1﹣10=2.故答案為2.考點(diǎn):規(guī)律型:數(shù)字的變化類.14、2【解題分析】

先利用圓的周長(zhǎng)公式計(jì)算出PA的長(zhǎng),然后利用勾股定理計(jì)算PO的長(zhǎng).【題目詳解】解:根據(jù)題意得2π×PA=3×2π×1,所以PA=3,所以圓錐的高OP=PA故答案為22【題目點(diǎn)撥】本題考查了圓錐的計(jì)算:圓錐的側(cè)面展開圖為一扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng).15、【解題分析】試題解析:∵四邊形ABCD是矩形,

∴OB=OD,OA=OC,AC=BD,

∴OA=OB,

∵AE垂直平分OB,

∴AB=AO,

∴OA=AB=OB=3,

∴BD=2OB=6,

∴AD=.【題目點(diǎn)撥】此題考查了矩形的性質(zhì)、等邊三角形的判定與性質(zhì)、線段垂直平分線的性質(zhì)、勾股定理;熟練掌握矩形的性質(zhì),證明三角形是等邊三角形是解決問(wèn)題的關(guān)鍵.16、【解題分析】分析:延長(zhǎng)AE交DF于G,再根據(jù)全等三角形的判定得出△AGD與△ABE全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出GF=1,再根據(jù)勾股定理得出EF的長(zhǎng).詳解:延長(zhǎng)AE交DF于G,如圖,∵AB=5,AE=3,BE=4,∴△ABE是直角三角形,同理可得△DFC是直角三角形,可得△AGD是直角三角形,∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,同理可得:∠ADG=∠BAE.在△AGD和△BAE中,∵,∴△AGD≌△BAE(ASA),∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1,同理可得:GF=1,∴EF=.故答案為.點(diǎn)睛:本題考查了正方形的性質(zhì),關(guān)鍵是根據(jù)全等三角形的判定和性質(zhì)得出EG=FG=1,再利用勾股定理計(jì)算.17、【解題分析】試題解析:305000用科學(xué)記數(shù)法表示為:故答案為三、解答題(共7小題,滿分69分)18、(1)(0,3);(2).【解題分析】

(1)在Rt△AOB中,由勾股定理得到OB=3,即可得出點(diǎn)B的坐標(biāo);(2)由=BC?OA,得到BC=4,進(jìn)而得到C(0,-1).設(shè)的解析式為,把A(2,0),C(0,-1)代入即可得到的解析式.【題目詳解】(1)在Rt△AOB中,∵,∴,∴OB=3,∴點(diǎn)B的坐標(biāo)是(0,3).(2)∵=BC?OA,∴BC×2=4,∴BC=4,∴C(0,-1).設(shè)的解析式為,把A(2,0),C(0,-1)代入得:,∴,∴的解析式為是.考點(diǎn):一次函數(shù)的性質(zhì).19、(1)4.5(2)根據(jù)數(shù)據(jù)畫圖見解析;(3)函數(shù)y的最小值為4.2,線段AD上靠近D點(diǎn)三等分點(diǎn)處.【解題分析】

(1)取點(diǎn)后測(cè)量即可解答;(2)建立坐標(biāo)系后,描點(diǎn)、連線畫出圖形即可;(3)根據(jù)所畫的圖象可知函數(shù)y的最小值為4.2,此時(shí)點(diǎn)P在圖1中的位置為.線段AD上靠近D點(diǎn)三等分點(diǎn)處.【題目詳解】(1)根據(jù)題意,作圖得,y=4.5故答案為:4.5(2)根據(jù)數(shù)據(jù)畫圖得(3)根據(jù)圖象,函數(shù)y的最小值為4.2,此時(shí)點(diǎn)P在圖1中的位置為.線段AD上靠近D點(diǎn)三等分點(diǎn)處.【題目點(diǎn)撥】本題為動(dòng)點(diǎn)問(wèn)題的函數(shù)圖象問(wèn)題,正確作出圖象,利用數(shù)形結(jié)合思想是解決本題的關(guān)鍵.20、(1)y=﹣x2+3x;(2)△EDB為等腰直角三角形;證明見解析;(3)(,2)或(,﹣2).【解題分析】

(1)由條件可求得拋物線的頂點(diǎn)坐標(biāo)及A點(diǎn)坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)由B、D、E的坐標(biāo)可分別求得DE、BD和BE的長(zhǎng),再利用勾股定理的逆定理可進(jìn)行判斷;(3)由B、E的坐標(biāo)可先求得直線BE的解析式,則可求得F點(diǎn)的坐標(biāo),當(dāng)AF為邊時(shí),則有FM∥AN且FM=AN,則可求得M點(diǎn)的縱坐標(biāo),代入拋物線解析式可求得M點(diǎn)坐標(biāo);當(dāng)AF為對(duì)角線時(shí),由A、F的坐標(biāo)可求得平行四邊形的對(duì)稱中心,可設(shè)出M點(diǎn)坐標(biāo),則可表示出N點(diǎn)坐標(biāo),再由N點(diǎn)在x軸上可得到關(guān)于M點(diǎn)坐標(biāo)的方程,可求得M點(diǎn)坐標(biāo).【題目詳解】解:(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵拋物線經(jīng)過(guò)O、A兩點(diǎn),∴拋物線頂點(diǎn)坐標(biāo)為(2,3),∴可設(shè)拋物線解析式為y=a(x﹣2)2+3,把A點(diǎn)坐標(biāo)代入可得0=a(4﹣2)2+3,解得a=﹣,∴拋物線解析式為y=﹣(x﹣2)2+3,即y=﹣x2+3x;(2)△EDB為等腰直角三角形.證明:由(1)可知B(4,3),且D(3,0),E(0,1),∴DE2=32+12=10,BD2=(4﹣3)2+32=10,BE2=42+(3﹣1)2=20,∴DE2+BD2=BE2,且DE=BD,∴△EDB為等腰直角三角形;(3)存在.理由如下:設(shè)直線BE解析式為y=kx+b,把B、E坐標(biāo)代入可得,解得,∴直線BE解析式為y=x+1,當(dāng)x=2時(shí),y=2,∴F(2,2),①當(dāng)AF為平行四邊形的一邊時(shí),則M到x軸的距離與F到x軸的距離相等,即M到x軸的距離為2,∴點(diǎn)M的縱坐標(biāo)為2或﹣2,在y=﹣x2+3x中,令y=2可得2=﹣x2+3x,解得x=,∵點(diǎn)M在拋物線對(duì)稱軸右側(cè),∴x>2,∴x=,∴M點(diǎn)坐標(biāo)為(,2);在y=﹣x2+3x中,令y=﹣2可得﹣2=﹣x2+3x,解得x=,∵點(diǎn)M在拋物線對(duì)稱軸右側(cè),∴x>2,∴x=,∴M點(diǎn)坐標(biāo)為(,﹣2);②當(dāng)AF為平行四邊形的對(duì)角線時(shí),∵A(4,0),F(xiàn)(2,2),∴線段AF的中點(diǎn)為(3,1),即平行四邊形的對(duì)稱中心為(3,1),設(shè)M(t,﹣t2+3t),N(x,0),則﹣t2+3t=2,解得t=,∵點(diǎn)M在拋物線對(duì)稱軸右側(cè),∴x>2,∵t>2,∴t=,∴M點(diǎn)坐標(biāo)為(,2);綜上可知存在滿足條件的點(diǎn)M,其坐標(biāo)為(,2)或(,﹣2).【題目點(diǎn)撥】本題為二次函數(shù)的綜合應(yīng)用,涉及矩形的性質(zhì)、待定系數(shù)法、勾股定理及其逆定理、平行四邊形的性質(zhì)、方程思想及分類討論思想等知識(shí).在(1)中求得拋物線的頂點(diǎn)坐標(biāo)是解題的關(guān)鍵,注意拋物線頂點(diǎn)式的應(yīng)用,在(2)中求得△EDB各邊的長(zhǎng)度是解題的關(guān)鍵,在(3)中確定出M點(diǎn)的縱坐標(biāo)是解題的關(guān)鍵,注意分類討論.本題考查知識(shí)點(diǎn)較多,綜合性較強(qiáng),難度較大.21、(1)證明見解析;(2)CD=2.【解題分析】

(1)根據(jù)三角函數(shù)的概念可知tanA=,cos∠BCD=,根據(jù)tanA=2cos∠BCD即可得結(jié)論;(2)由∠B的余弦值和(1)的結(jié)論即可求得BD,利用勾股定理求得CD即可.【題目詳解】(1)∵tanA=,cos∠BCD=,tanA=2cos∠BCD,∴=2·,∴BC=2AD.(2)∵cosB==,BC=2AD,∴=.∵AB=10,∴AD=×10=4,BD=10-4=6,∴BC=8,∴CD==2.【題目點(diǎn)撥】本題考查了直角三角形中的有關(guān)問(wèn)題,主要考查了勾股定理

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論