![安徽省淮南實驗中學2024屆中考數(shù)學押題卷含解析_第1頁](http://file4.renrendoc.com/view11/M00/34/0A/wKhkGWWHqVCACweSAAG6KVgB-HQ906.jpg)
![安徽省淮南實驗中學2024屆中考數(shù)學押題卷含解析_第2頁](http://file4.renrendoc.com/view11/M00/34/0A/wKhkGWWHqVCACweSAAG6KVgB-HQ9062.jpg)
![安徽省淮南實驗中學2024屆中考數(shù)學押題卷含解析_第3頁](http://file4.renrendoc.com/view11/M00/34/0A/wKhkGWWHqVCACweSAAG6KVgB-HQ9063.jpg)
![安徽省淮南實驗中學2024屆中考數(shù)學押題卷含解析_第4頁](http://file4.renrendoc.com/view11/M00/34/0A/wKhkGWWHqVCACweSAAG6KVgB-HQ9064.jpg)
![安徽省淮南實驗中學2024屆中考數(shù)學押題卷含解析_第5頁](http://file4.renrendoc.com/view11/M00/34/0A/wKhkGWWHqVCACweSAAG6KVgB-HQ9065.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
安徽省淮南實驗中學2024屆中考數(shù)學押題卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.﹣2的絕對值是()A.2 B. C. D.2.已知一次函數(shù)y=﹣2x+3,當0≤x≤5時,函數(shù)y的最大值是()A.0B.3C.﹣3D.﹣73.在方格紙中,選擇標有序號①②③④中的一個小正方形涂黑,與圖中陰影部分構(gòu)成中心對稱圖形.該小正方形的序號是()A.① B.② C.③ D.④4.如果關(guān)于x的一元二次方程k2x2-(2k+1)x+1=0有兩個不相等的實數(shù)根,那么k的取值范圍是()A.k>- B.k>-且 C.k<- D.k-且5.我國的釣魚島面積約為4400000m2,用科學記數(shù)法表示為()A.4.4×106B.44×105C.4×106D.0.44×1076.三個等邊三角形的擺放位置如圖,若∠3=60°,則∠1+∠2的度數(shù)為()A.90° B.120° C.270° D.360°7.下列各式中,不是多項式2x2﹣4x+2的因式的是()A.2 B.2(x﹣1) C.(x﹣1)2 D.2(x﹣2)8.二次函數(shù)(a≠0)的圖象如圖所示,則下列命題中正確的是()A.a(chǎn)>b>cB.一次函數(shù)y=ax+c的圖象不經(jīng)第四象限C.m(am+b)+b<a(m是任意實數(shù))D.3b+2c>09.計算的結(jié)果是()A. B. C. D.110.已知關(guān)于x的方程恰有一個實根,則滿足條件的實數(shù)a的值的個數(shù)為()A.1 B.2 C.3 D.4二、填空題(共7小題,每小題3分,滿分21分)11.若關(guān)于x的二次函數(shù)y=ax2+a2的最小值為4,則a的值為______.12.如圖,已知一塊圓心角為270°的扇形鐵皮,用它做一個圓錐形的煙囪帽(接縫忽略不計),圓錐底面圓的直徑是60cm,則這塊扇形鐵皮的半徑是_____cm.13.在△ABC中,MN∥BC分別交AB,AC于點M,N;若AM=1,MB=2,BC=3,則MN的長為_____.14.如圖,Rt△ABC中,∠BAC=90°,AB=3,AC=6,點D,E分別是邊BC,AC上的動點,則DA+DE的最小值為_____.15.在日本核電站事故期間,我國某監(jiān)測點監(jiān)測到極微量的人工放射性核素碘﹣131,其濃度為0.0000872貝克/立方米.數(shù)據(jù)“0.0000872”用科學記數(shù)法可表示為________.16.PA、PB分別切⊙O于點A、B,∠PAB=60°,點C在⊙O上,則∠ACB的度數(shù)為_____.17.如圖所示,數(shù)軸上點A所表示的數(shù)為a,則a的值是____.三、解答題(共7小題,滿分69分)18.(10分)觀察下列各個等式的規(guī)律:第一個等式:=1,第二個等式:=2,第三個等式:=3…請用上述等式反映出的規(guī)律解決下列問題:直接寫出第四個等式;猜想第n個等式(用n的代數(shù)式表示),并證明你猜想的等式是正確的.19.(5分)下面是“作三角形一邊上的高”的尺規(guī)作圖過程.已知:△ABC.求作:△ABC的邊BC上的高AD.作法:如圖2,(1)分別以點B和點C為圓心,BA,CA為半徑作弧,兩弧相交于點E;(2)作直線AE交BC邊于點D.所以線段AD就是所求作的高.請回答:該尺規(guī)作圖的依據(jù)是______.20.(8分)給出如下定義:對于⊙O的弦MN和⊙O外一點P(M,O,N三點不共線,且點P,O在直線MN的異側(cè)),當∠MPN+∠MON=180°時,則稱點P是線段MN關(guān)于點O的關(guān)聯(lián)點.圖1是點P為線段MN關(guān)于點O的關(guān)聯(lián)點的示意圖.在平面直角坐標系xOy中,⊙O的半徑為1.(1)如圖2,已知M(,),N(,﹣),在A(1,0),B(1,1),C(,0)三點中,是線段MN關(guān)于點O的關(guān)聯(lián)點的是;(2)如圖3,M(0,1),N(,﹣),點D是線段MN關(guān)于點O的關(guān)聯(lián)點.①∠MDN的大小為;②在第一象限內(nèi)有一點E(m,m),點E是線段MN關(guān)于點O的關(guān)聯(lián)點,判斷△MNE的形狀,并直接寫出點E的坐標;③點F在直線y=﹣x+2上,當∠MFN≥∠MDN時,求點F的橫坐標x的取值范圍.21.(10分)如圖,在平面直角坐標系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(n≠0)的圖象交于第二、四象限內(nèi)的A、B兩點,與x軸交于點C,點B坐標為(m,﹣1),AD⊥x軸,且AD=3,tan∠AOD=.求該反比例函數(shù)和一次函數(shù)的解析式;求△AOB的面積;點E是x軸上一點,且△AOE是等腰三角形,請直接寫出所有符合條件的E點的坐標.22.(10分)如圖,已知拋物線y=ax2+bx+5經(jīng)過A(﹣5,0),B(﹣4,﹣3)兩點,與x軸的另一個交點為C,頂點為D,連結(jié)CD.求該拋物線的表達式;點P為該拋物線上一動點(與點B、C不重合),設(shè)點P的橫坐標為t.①當點P在直線BC的下方運動時,求△PBC的面積的最大值;②該拋物線上是否存在點P,使得∠PBC=∠BCD?若存在,求出所有點P的坐標;若不存在,請說明理由.23.(12分)為了傳承中華優(yōu)秀傳統(tǒng)文化,市教育局決定開展“經(jīng)典誦讀進校園”活動,某校團委組織八年級100名學生進行“經(jīng)典誦讀”選拔賽,賽后對全體參賽學生的成績進行整理,得到下列不完整的統(tǒng)計圖表.組別分數(shù)段頻次頻率A60≤x<70170.17B
70≤x<80
30
aC
80≤x<90
b
0.45D
90≤x<100
8
0.08請根據(jù)所給信息,解答以下問題:表中a=______,b=______;請計算扇形統(tǒng)計圖中B組對應(yīng)扇形的圓心角的度數(shù);已知有四名同學均取得98分的最好成績,其中包括來自同一班級的甲、乙兩名同學,學校將從這四名同學中隨機選出兩名參加市級比賽,請用列表法或畫樹狀圖法求甲、乙兩名同學都被選中的概率.24.(14分)下面是一位同學的一道作圖題:已知線段a、b、c(如圖),求作線段x,使他的作法如下:(1)以點O為端點畫射線,.(2)在上依次截取,.(3)在上截?。?)聯(lián)結(jié),過點B作,交于點D.所以:線段________就是所求的線段x.①試將結(jié)論補完整②這位同學作圖的依據(jù)是________③如果,,,試用向量表示向量.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解題分析】分析:根據(jù)數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值的定義,在數(shù)軸上,點﹣2到原點的距離是2,所以﹣2的絕對值是2,故選A.2、B【解題分析】【分析】由于一次函數(shù)y=-2x+3中k=-2<0由此可以確定y隨x的變化而變化的情況,即確定函數(shù)的增減性,然后利用解析式即可求出自變量在0≤x≤5范圍內(nèi)函數(shù)值的最大值.【題目詳解】∵一次函數(shù)y=﹣2x+3中k=﹣2<0,∴y隨x的增大而減小,∴在0≤x≤5范圍內(nèi),x=0時,函數(shù)值最大﹣2×0+3=3,故選B.【題目點撥】本題考查了一次函數(shù)y=kx+b的圖象的性質(zhì):①k>0,y隨x的增大而增大;②k<0,y隨x的增大而減?。?、B【解題分析】根據(jù)中心對稱圖形的概念,中心對稱圖形是圖形沿對稱中心旋轉(zhuǎn)180度后與原圖重合。因此,通過觀察發(fā)現(xiàn),當涂黑②時,所形成的圖形關(guān)于點A中心對稱。故選B。4、B【解題分析】
在與一元二次方程有關(guān)的求值問題中,必須滿足下列條件:(1)二次項系數(shù)不為零;(2)在有兩個實數(shù)根下必須滿足△=b2-4ac≥1.【題目詳解】由題意知,k≠1,方程有兩個不相等的實數(shù)根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.因此可求得k>且k≠1.故選B.【題目點撥】本題考查根據(jù)根的情況求參數(shù),熟記判別式與根的關(guān)系是解題的關(guān)鍵.5、A【解題分析】4400000=4.4×1.故選A.點睛:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).6、B【解題分析】
先根據(jù)圖中是三個等邊三角形可知三角形各內(nèi)角等于60°,用∠1,∠2,∠3表示出△ABC各角的度數(shù),再根據(jù)三角形內(nèi)角和定理即可得出結(jié)論.【題目詳解】∵圖中是三個等邊三角形,∠3=60°,
∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,
∠BAC=180°-60°-∠1=120°-∠1,
∵∠ABC+∠ACB+∠BAC=180°,
∴60°+(120°-∠2)+(120°-∠1)=180°,
∴∠1+∠2=120°.
故選B.【題目點撥】考查的是等邊三角形的性質(zhì),熟知等邊三角形各內(nèi)角均等于60°是解答此題的關(guān)鍵.7、D【解題分析】
原式分解因式,判斷即可.【題目詳解】原式=2(x2﹣2x+1)=2(x﹣1)2。故選:D.【題目點撥】考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關(guān)鍵.8、D【解題分析】解:A.由二次函數(shù)的圖象開口向上可得a>0,由拋物線與y軸交于x軸下方可得c<0,由x=﹣1,得出=﹣1,故b>0,b=2a,則b>a>c,故此選項錯誤;B.∵a>0,c<0,∴一次函數(shù)y=ax+c的圖象經(jīng)一、三、四象限,故此選項錯誤;C.當x=﹣1時,y最小,即a﹣b﹣c最小,故a﹣b﹣c<am2+bm+c,即m(am+b)+b>a,故此選項錯誤;D.由圖象可知x=1,a+b+c>0①,∵對稱軸x=﹣1,當x=1,y>0,∴當x=﹣3時,y>0,即9a﹣3b+c>0②①+②得10a﹣2b+2c>0,∵b=2a,∴得出3b+2c>0,故選項正確;故選D.點睛:此題主要考查了圖象與二次函數(shù)系數(shù)之間的關(guān)系,二次函數(shù)與方程之間的轉(zhuǎn)換,會利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根據(jù)圖象判斷其值.9、D【解題分析】
根據(jù)同分母分式的加法法則計算可得結(jié)論.【題目詳解】===1.故選D.【題目點撥】本題考查了分式的加減法,解題的關(guān)鍵是掌握同分母分式的加減運算法則.10、C【解題分析】
先將原方程變形,轉(zhuǎn)化為整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一個實數(shù)根,因此,方程①的根有兩種情況:(1)方程①有兩個相等的實數(shù)根,此二等根使x(x-2)≠1;(2)方程①有兩個不等的實數(shù)根,而其中一根使x(x-2)=1,另外一根使x(x-2)≠1.針對每一種情況,分別求出a的值及對應(yīng)的原方程的根.【題目詳解】去分母,將原方程兩邊同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①方程①的根的情況有兩種:(1)方程①有兩個相等的實數(shù)根,即△=9﹣3×2(3﹣a)=1.解得a=.當a=時,解方程2x2﹣3x+(﹣+3)=1,得x1=x2=.(2)方程①有兩個不等的實數(shù)根,而其中一根使原方程分母為零,即方程①有一個根為1或2.(i)當x=1時,代入①式得3﹣a=1,即a=3.當a=3時,解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.而x1=1是增根,即這時方程①的另一個根是x=1.4.它不使分母為零,確是原方程的唯一根.(ii)當x=2時,代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.當a=5時,解方程2x2﹣3x﹣2=1,x1=2,x2=﹣.x1是增根,故x=﹣為方程的唯一實根;因此,若原分式方程只有一個實數(shù)根時,所求的a的值分別是,3,5共3個.故選C.【題目點撥】考查了分式方程的解法及增根問題.由于原分式方程去分母后,得到一個含有字母的一元二次方程,所以要分情況進行討論.理解分式方程產(chǎn)生增根的原因及一元二次方程解的情況從而正確進行分類是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1.【解題分析】
根據(jù)二次函數(shù)的性質(zhì)列出不等式和等式,計算即可.【題目詳解】解:∵關(guān)于x的二次函數(shù)y=ax1+a1的最小值為4,
∴a1=4,a>0,
解得,a=1,
故答案為1.【題目點撥】本題考查的是二次函數(shù)的最值問題,掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.12、40cm【解題分析】
首先根據(jù)圓錐的底面直徑求得圓錐的底面周長,然后根據(jù)底面周長等于展開扇形的弧長求得鐵皮的半徑即可.【題目詳解】∵圓錐的底面直徑為60cm,∴圓錐的底面周長為60πcm,∴扇形的弧長為60πcm,設(shè)扇形的半徑為r,則=60π,解得:r=40cm,故答案為:40cm.【題目點撥】本題考查了圓錐的計算,解題的關(guān)鍵是首先求得圓錐的底面周長,利用圓錐的底面周長等于扇形的弧長求解.13、1【解題分析】
∵MN∥BC,∴△AMN∽△ABC,∴,即,∴MN=1.故答案為1.14、【解題分析】【分析】如圖,作A關(guān)于BC的對稱點A',連接AA',交BC于F,過A'作AE⊥AC于E,交BC于D,則AD=A'D,此時AD+DE的值最小,就是A'E的長,根據(jù)相似三角形對應(yīng)邊的比可得結(jié)論.【題目詳解】如圖,作A關(guān)于BC的對稱點A',連接AA',交BC于F,過A'作AE⊥AC于E,交BC于D,則AD=A'D,此時AD+DE的值最小,就是A'E的長;Rt△ABC中,∠BAC=90°,AB=3,AC=6,∴BC==9,S△ABC=AB?AC=BC?AF,∴3×6=9AF,AF=2,∴AA'=2AF=4,∵∠A'FD=∠DEC=90°,∠A'DF=∠CDE,∴∠A'=∠C,∵∠AEA'=∠BAC=90°,∴△AEA'∽△BAC,∴,∴,∴A'E=,即AD+DE的最小值是,故答案為.【題目點撥】本題考查軸對稱﹣最短問題、三角形相似的性質(zhì)和判定、兩點之間線段最短、垂線段最短等知識,解題的關(guān)鍵是靈活運用軸對稱以及垂線段最短解決最短問題.15、【解題分析】
科學記數(shù)法的表示形式為ax10n的形式,其中1≤lal<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【題目詳解】解:0.0000872=故答案為:【題目點撥】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.16、60°或120°.【解題分析】
連接OA、OB,根據(jù)切線的性質(zhì)得出∠OAP的度數(shù),∠OBP的度數(shù);再根據(jù)四邊形的內(nèi)角和是360°,求出∠AOB的度數(shù),有圓周角定理或圓內(nèi)接四邊形的性質(zhì),求出∠ACB的度數(shù)即可.【題目詳解】解:連接OA、OB.∵PA,PB分別切⊙O于點A,B,∴OA⊥PA,OB⊥PB;∴∠PAO=∠PBO=90°;又∵∠APB=60°,∴在四邊形AOBP中,∠AOB=360°﹣90°﹣90°﹣60°=120°,∴即當C在D處時,∠ACB=60°.在四邊形ADBC中,∠ACB=180°﹣∠ADB=180°﹣60°=120°.于是∠ACB的度數(shù)為60°或120°,故答案為60°或120°.【題目點撥】本題考查的是切線的性質(zhì)定理,圓內(nèi)接四邊形的性質(zhì),是一道基礎(chǔ)題.17、【解題分析】
根據(jù)數(shù)軸上點的特點和相關(guān)線段的長,利用勾股定理求出斜邊的長,即知表示0的點和A之間的線段的長,進而可推出A的坐標.【題目詳解】∵直角三角形的兩直角邊為1,2,∴斜邊長為,那么a的值是:﹣.故答案為.【題目點撥】此題主要考查了實數(shù)與數(shù)軸之間的對應(yīng)關(guān)系,其中主要利用了:已知兩點間的距離,求較大的數(shù),就用較小的數(shù)加上兩點間的距離.三、解答題(共7小題,滿分69分)18、(1)=4;(2)=n.【解題分析】
試題分析:(1)根據(jù)題目中的式子的變化規(guī)律可以寫出第四個等式;(2)根據(jù)題目中的式子的變化規(guī)律可以猜想出第n等式并加以證明.試題解析:解:(1)由題目中式子的變化規(guī)律可得,第四個等式是:=4;(2)第n個等式是:=n.證明如下:∵===n∴第n個等式是:=n.點睛:本題考查規(guī)律型:數(shù)字的變化類,解答本題的關(guān)鍵是明確題目中式子的變化規(guī)律,求出相應(yīng)的式子.19、到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上;三角形的高的定義;兩點確定一條直線【解題分析】
利用作法和線段垂直平分線定理的逆定理可得到BC垂直平分AE,然后根據(jù)三角形高的定義得到AD為高【題目詳解】解:由作法得BC垂直平分AE,所以該尺規(guī)作圖的依據(jù)為到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上;三角形的高的定義;兩點確定一條直線.故答案為到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上;三角形的高的定義;兩點確定一條直線.【題目點撥】此題考查三角形高的定義,解題的關(guān)鍵在于利用線段垂直平分線定理的逆定理求解.20、(1)C;(2)①60;②E(,1);③點F的橫坐標x的取值范圍≤xF≤.【解題分析】
(1)由題意線段MN關(guān)于點O的關(guān)聯(lián)點的是以線段MN的中點為圓心,為半徑的圓上,所以點C滿足條件;
(2)①如圖3-1中,作NH⊥x軸于H.求出∠MON的大小即可解決問題;
②如圖3-2中,結(jié)論:△MNE是等邊三角形.由∠MON+∠MEN=180°,推出M、O、N、E四點共圓,可得∠MNE=∠MOE=60°,由此即可解決問題;
③如圖3-3中,由②可知,△MNE是等邊三角形,作△MNE的外接圓⊙O′,首先證明點E在直線y=-x+2上,設(shè)直線交⊙O′于E、F,可得F(,),觀察圖形即可解決問題;【題目詳解】(1)由題意線段MN關(guān)于點O的關(guān)聯(lián)點的是以線段MN的中點為圓心,為半徑的圓上,所以點C滿足條件,
故答案為C.
(2)①如圖3-1中,作NH⊥x軸于H.
∵N(,-),
∴tan∠NOH=,
∴∠NOH=30°,
∠MON=90°+30°=120°,
∵點D是線段MN關(guān)于點O的關(guān)聯(lián)點,
∴∠MDN+∠MON=180°,
∴∠MDN=60°.
故答案為60°.
②如圖3-2中,結(jié)論:△MNE是等邊三角形.
理由:作EK⊥x軸于K.
∵E(,1),
∴tan∠EOK=,
∴∠EOK=30°,
∴∠MOE=60°,
∵∠MON+∠MEN=180°,
∴M、O、N、E四點共圓,
∴∠MNE=∠MOE=60°,
∵∠MEN=60°,
∴∠MEN=∠MNE=∠NME=60°,
∴△MNE是等邊三角形.③如圖3-3中,由②可知,△MNE是等邊三角形,作△MNE的外接圓⊙O′,
易知E(,1),
∴點E在直線y=-x+2上,設(shè)直線交⊙O′于E、F,可得F(,),
觀察圖象可知滿足條件的點F的橫坐標x的取值范圍≤xF≤.【題目點撥】此題考查一次函數(shù)綜合題,直線與圓的位置關(guān)系,等邊三角形的判定和性質(zhì),銳角三角函數(shù),解題的關(guān)鍵是理解題意,靈活運用所學知識解決問題,屬于中考壓軸題.21、(1)y=﹣,y=﹣x+2;(2)6;(3)當點E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)時,△AOE是等腰三角形.【解題分析】
(1)利用待定系數(shù)法,即可得到反比例函數(shù)和一次函數(shù)的解析式;(2)利用一次函數(shù)解析式求得C(4,0),即OC=4,即可得出△AOB的面積=×4×3=6;(3)分類討論:當AO為等腰三角形腰與底時,求出點E坐標即可.【題目詳解】(1)如圖,在Rt△OAD中,∠ADO=90°,∵tan∠AOD=,AD=3,∴OD=2,∴A(﹣2,3),把A(﹣2,3)代入y=,考點:n=3×(﹣2)=﹣6,所以反比例函數(shù)解析式為:y=﹣,把B(m,﹣1)代入y=﹣,得:m=6,把A(﹣2,3),B(6,﹣1)分別代入y=kx+b,得:,解得:,所以一次函數(shù)解析式為:y=﹣x+2;(2)當y=0時,﹣x+2=0,解得:x=4,則C(4,0),所以;(3)當OE3=OE2=AO=,即E2(﹣,0),E3(,0);當OA=AE1=時,得到OE1=2OD=4,即E1(﹣4,0);當AE4=OE4時,由A(﹣2,3),O(0,0),得到直線AO解析式為y=﹣x,中點坐標為(﹣1,1.5),令y=0,得到y(tǒng)=﹣,即E4(﹣,0),綜上,當點E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)時,△AOE是等腰三角形.【題目點撥】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,熟練掌握各自的性質(zhì)是解題的關(guān)鍵.22、(1)y=x2+6x+5;(2)①S△PBC的最大值為;②存在,點P的坐標為P(﹣,﹣)或(0,5).【解題分析】
(1)將點A、B坐標代入二次函數(shù)表達式,即可求出二次函數(shù)解析式;(2)①如圖1,過點P作y軸的平行線交BC于點G,將點B、C的坐標代入一次函數(shù)表達式并解得:直線BC的表達式為:y=x+1,設(shè)點G(t,t+1),則點P(t,t2+6t+5),利用三角形面積公式求出最大值即可;②設(shè)直線BP與CD交于點H,當點P在直線BC下方時,求出線段BC的中點坐標為(﹣,﹣),過該點與BC垂直的直線的k值為﹣1,求出直線BC中垂線的表達式為:y=﹣x﹣4…③,同理直線CD的表達式為:y=2x+2…④,、聯(lián)立③④并解得:x=﹣2,即點H(﹣2,﹣2),同理可得直線BH的表達式為:y=x﹣1…⑤,聯(lián)立⑤和y=x2+6x+5并解得:x=﹣,即可求出P點;當點P(P′)在直線BC上方時,根據(jù)∠PBC=∠BCD求出BP′∥CD,求出直線BP′的表達式為:y=2x+5,聯(lián)立y=x2+6x+5和y=2x+5,求出x,即可求出P.【題目詳解】解:(1)將點A、B坐標代入二次函數(shù)表達式得:,解得:,故拋物線的表達式為:y=x2+6x+5…①,令y=0,則x=﹣1或﹣5,即點C(﹣1,0);(2)①如圖1,過點P作y軸的平行線交BC于點G,將點B、C的坐標代入一次函數(shù)表達式并解得:直線BC的表達式為:y=x+1…②,設(shè)點G(t,t+1),則點P(t,t2+6t+5),S△PBC=PG(xC﹣xB)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,∵-<0,∴S△PBC有最大值,當t=﹣時,其最大值為;②設(shè)直線BP與CD交于點H,當點P在直線BC下方時,∵∠PBC=∠BCD,∴點H在BC的中垂線上,線段BC的中點坐標為(﹣,﹣),過該點與BC垂直的直線的k值為﹣1,設(shè)BC中垂線的表達式為:y=﹣x+m,將點(﹣,﹣)代入上式并解得:直線BC中垂線的表達式為:y=﹣x﹣4…③,同理直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年袖珍式土封口機行業(yè)深度研究分析報告
- 2025年聲光控延時自動開關(guān)行業(yè)深度研究分析報告
- 2025年度商用空調(diào)設(shè)備銷售與售后服務(wù)合同范本
- 世紀嘉諾租房合同范本
- 2025年度廣告創(chuàng)意策劃與執(zhí)行服務(wù)合同范本-@-1
- 五谷豆?jié){加盟合同范例
- 冰箱陳列協(xié)議合同范本
- 個人委托公司社保合同范本
- 助醫(yī)合同范本
- 2025年度跨境電商平臺知識產(chǎn)權(quán)保護合同標的授權(quán)協(xié)議
- 2025年道路運輸企業(yè)安全生產(chǎn)管理人員考試題(附答案)
- 建設(shè)工程質(zhì)量安全監(jiān)督人員考試題庫含答案
- 居間合同標準范本
- 2025年上半年山東人才發(fā)展集團限公司社會招聘易考易錯模擬試題(共500題)試卷后附參考答案
- 2025年上海民航職業(yè)技術(shù)學院高職單招職業(yè)適應(yīng)性測試近5年??及鎱⒖碱}庫含答案解析
- 《生命與宗教》課件
- 2024年河南省《輔警招聘考試必刷500題》考試題庫含答案【綜合卷】
- 三叉神經(jīng)痛的護理問題
- 2024-2025學年成都市金牛區(qū)九年級上期末(一診)英語試題(含答案)
- 2025年高壓電工資格考試國家總局模擬題庫及答案(共四套)
- 軟件公司K3渠道招募制度
評論
0/150
提交評論