2024屆安徽省合肥市七中、合肥十中高三上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2024屆安徽省合肥市七中、合肥十中高三上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2024屆安徽省合肥市七中、合肥十中高三上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2024屆安徽省合肥市七中、合肥十中高三上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2024屆安徽省合肥市七中、合肥十中高三上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆安徽省合肥市七中、合肥十中高三上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若命題p:從有2件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為三分之一;命題q:在邊長為4的正方形ABCD內(nèi)任取一點(diǎn)M,則∠AMB>90°的概率為π8A.p∧qB.(?p)∧qC.p∧(?q)D.?q2.已知焦點(diǎn)為的拋物線的準(zhǔn)線與軸交于點(diǎn),點(diǎn)在拋物線上,則當(dāng)取得最大值時(shí),直線的方程為()A.或 B.或 C.或 D.3.已知,復(fù)數(shù),,且為實(shí)數(shù),則()A. B. C.3 D.-34.過橢圓的左焦點(diǎn)的直線過的上頂點(diǎn),且與橢圓相交于另一點(diǎn),點(diǎn)在軸上的射影為,若,是坐標(biāo)原點(diǎn),則橢圓的離心率為()A. B. C. D.5.設(shè),,,則的大小關(guān)系是()A. B. C. D.6.已知點(diǎn)是拋物線的對稱軸與準(zhǔn)線的交點(diǎn),點(diǎn)為拋物線的焦點(diǎn),點(diǎn)在拋物線上且滿足,若取得最大值時(shí),點(diǎn)恰好在以為焦點(diǎn)的橢圓上,則橢圓的離心率為()A. B. C. D.7.若實(shí)數(shù)滿足不等式組,則的最大值為()A. B. C.3 D.28.要得到函數(shù)的圖象,只需將函數(shù)的圖象上所有點(diǎn)的()A.橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),再向左平移個(gè)單位長度B.橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),再向右平移個(gè)單位長度C.橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再向左平移個(gè)單位長度D.橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再向右平移個(gè)單位長度9.若函數(shù)在處取得極值2,則()A.-3 B.3 C.-2 D.210.已知點(diǎn)P在橢圓τ:=1(a>b>0)上,點(diǎn)P在第一象限,點(diǎn)P關(guān)于原點(diǎn)O的對稱點(diǎn)為A,點(diǎn)P關(guān)于x軸的對稱點(diǎn)為Q,設(shè),直線AD與橢圓τ的另一個(gè)交點(diǎn)為B,若PA⊥PB,則橢圓τ的離心率e=()A. B. C. D.11.如圖網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某幾何體的三視圖,則該幾何體的所有棱中最長棱的長度為()A. B. C. D.12.若圓錐軸截面面積為,母線與底面所成角為60°,則體積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的焦點(diǎn)到準(zhǔn)線的距離為.14.如圖,養(yǎng)殖公司欲在某湖邊依托互相垂直的湖岸線、圍成一個(gè)三角形養(yǎng)殖區(qū).為了便于管理,在線段之間有一觀察站點(diǎn),到直線,的距離分別為8百米、1百米,則觀察點(diǎn)到點(diǎn)、距離之和的最小值為______________百米.15.四面體中,底面,,,則四面體的外接球的表面積為______16.設(shè)為正實(shí)數(shù),若則的取值范圍是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的右焦點(diǎn)為,過點(diǎn)且與軸垂直的直線被橢圓截得的線段長為,且與短軸兩端點(diǎn)的連線相互垂直.(1)求橢圓的方程;(2)若圓上存在兩點(diǎn),,橢圓上存在兩個(gè)點(diǎn)滿足:三點(diǎn)共線,三點(diǎn)共線,且,求四邊形面積的取值范圍.18.(12分)已知直線:(為參數(shù)),曲線(為參數(shù)).(1)設(shè)與相交于,兩點(diǎn),求;(2)若把曲線上各點(diǎn)的橫坐標(biāo)壓縮為原來的倍,縱坐標(biāo)壓縮為原來的倍,得到曲線,設(shè)點(diǎn)是曲線上的一個(gè)動(dòng)點(diǎn),求它到直線距離的最小值.19.(12分)在極坐標(biāo)系中,已知曲線C的方程為(),直線l的方程為.設(shè)直線l與曲線C相交于A,B兩點(diǎn),且,求r的值.20.(12分)如圖,在直三棱柱中,,,D,E分別為AB,BC的中點(diǎn).(1)證明:平面平面;(2)求點(diǎn)到平面的距離.21.(12分)已知橢圓E:()的離心率為,且短軸的一個(gè)端點(diǎn)B與兩焦點(diǎn)A,C組成的三角形面積為.(Ⅰ)求橢圓E的方程;(Ⅱ)若點(diǎn)P為橢圓E上的一點(diǎn),過點(diǎn)P作橢圓E的切線交圓O:于不同的兩點(diǎn)M,N(其中M在N的右側(cè)),求四邊形面積的最大值.22.(10分)已知,均為正項(xiàng)數(shù)列,其前項(xiàng)和分別為,,且,,,當(dāng),時(shí),,.(1)求數(shù)列,的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】因?yàn)閺挠?件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為P1=1C42=16,即命題p是錯(cuò)誤,則?p是正確的;在邊長為4的正方形ABCD內(nèi)任取一點(diǎn)M點(diǎn)睛:本題將古典型概率公式、幾何型概率公式與命題的真假(含或、且、非等連接詞)的命題構(gòu)成的復(fù)合命題的真假的判定有機(jī)地整合在一起,旨在考查命題真假的判定及古典概型的特征與計(jì)算公式的運(yùn)用、幾何概型的特征與計(jì)算公式的運(yùn)用等知識與方法的綜合運(yùn)用,以及分析問題解決問題的能力。2、A【解析】

過作與準(zhǔn)線垂直,垂足為,利用拋物線的定義可得,要使最大,則應(yīng)最大,此時(shí)與拋物線相切,再用判別式或?qū)?shù)計(jì)算即可.【詳解】過作與準(zhǔn)線垂直,垂足為,,則當(dāng)取得最大值時(shí),最大,此時(shí)與拋物線相切,易知此時(shí)直線的斜率存在,設(shè)切線方程為,則.則,則直線的方程為.故選:A.【點(diǎn)睛】本題考查直線與拋物線的位置關(guān)系,涉及到拋物線的定義,考查學(xué)生轉(zhuǎn)化與化歸的思想,是一道中檔題.3、B【解析】

把和代入再由復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡,利用虛部為0求得m值.【詳解】因?yàn)闉閷?shí)數(shù),所以,解得.【點(diǎn)睛】本題考查復(fù)數(shù)的概念,考查運(yùn)算求解能力.4、D【解析】

求得點(diǎn)的坐標(biāo),由,得出,利用向量的坐標(biāo)運(yùn)算得出點(diǎn)的坐標(biāo),代入橢圓的方程,可得出關(guān)于、、的齊次等式,進(jìn)而可求得橢圓的離心率.【詳解】由題意可得、.由,得,則,即.而,所以,所以點(diǎn).因?yàn)辄c(diǎn)在橢圓上,則,整理可得,所以,所以.即橢圓的離心率為故選:D.【點(diǎn)睛】本題考查橢圓離心率的求解,解答的關(guān)鍵就是要得出、、的齊次等式,充分利用點(diǎn)在橢圓上這一條件,圍繞求點(diǎn)的坐標(biāo)來求解,考查計(jì)算能力,屬于中等題.5、A【解析】

選取中間值和,利用對數(shù)函數(shù),和指數(shù)函數(shù)的單調(diào)性即可求解.【詳解】因?yàn)閷?shù)函數(shù)在上單調(diào)遞增,所以,因?yàn)閷?shù)函數(shù)在上單調(diào)遞減,所以,因?yàn)橹笖?shù)函數(shù)在上單調(diào)遞增,所以,綜上可知,.故選:A【點(diǎn)睛】本題考查利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小;考查邏輯思維能力和知識的綜合運(yùn)用能力;選取合適的中間值是求解本題的關(guān)鍵;屬于中檔題、??碱}型.6、B【解析】

設(shè),利用兩點(diǎn)間的距離公式求出的表達(dá)式,結(jié)合基本不等式的性質(zhì)求出的最大值時(shí)的點(diǎn)坐標(biāo),結(jié)合橢圓的定義以及橢圓的離心率公式求解即可.【詳解】設(shè),因?yàn)槭菕佄锞€的對稱軸與準(zhǔn)線的交點(diǎn),點(diǎn)為拋物線的焦點(diǎn),所以,則,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)且僅當(dāng)時(shí)取等號,此時(shí),,點(diǎn)在以為焦點(diǎn)的橢圓上,,由橢圓的定義得,所以橢圓的離心率,故選B.【點(diǎn)睛】本題主要考查橢圓的定義及離心率,屬于難題.離心率的求解在圓錐曲線的考查中是一個(gè)重點(diǎn)也是難點(diǎn),一般求離心率有以下幾種情況:①直接求出,從而求出;②構(gòu)造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來求解.7、C【解析】

作出可行域,直線目標(biāo)函數(shù)對應(yīng)的直線,平移該直線可得最優(yōu)解.【詳解】作出可行域,如圖由射線,線段,射線圍成的陰影部分(含邊界),作直線,平移直線,當(dāng)過點(diǎn)時(shí),取得最大值1.故選:C.【點(diǎn)睛】本題考查簡單的線性規(guī)劃問題,解題關(guān)鍵是作出可行域,本題要注意可行域不是一個(gè)封閉圖形.8、C【解析】

根據(jù)三角函數(shù)圖像的變換與參數(shù)之間的關(guān)系,即可容易求得.【詳解】為得到,將橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),故可得;再將向左平移個(gè)單位長度,故可得.故選:C.【點(diǎn)睛】本題考查三角函數(shù)圖像的平移,涉及誘導(dǎo)公式的使用,屬基礎(chǔ)題.9、A【解析】

對函數(shù)求導(dǎo),可得,即可求出,進(jìn)而可求出答案.【詳解】因?yàn)?所以,則,解得,則.故選:A.【點(diǎn)睛】本題考查了函數(shù)的導(dǎo)數(shù)與極值,考查了學(xué)生的運(yùn)算求解能力,屬于基礎(chǔ)題.10、C【解析】

設(shè),則,,,設(shè),根據(jù)化簡得到,得到答案.【詳解】設(shè),則,,,則,設(shè),則,兩式相減得到:,,,即,,,故,即,故,故.故選:.【點(diǎn)睛】本題考查了橢圓的離心率,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.11、C【解析】

利用正方體將三視圖還原,觀察可得最長棱為AD,算出長度.【詳解】幾何體的直觀圖如圖所示,易得最長的棱長為故選:C.【點(diǎn)睛】本題考查了三視圖還原幾何體的問題,其中利用正方體作襯托是關(guān)鍵,屬于基礎(chǔ)題.12、D【解析】

設(shè)圓錐底面圓的半徑為,由軸截面面積為可得半徑,再利用圓錐體積公式計(jì)算即可.【詳解】設(shè)圓錐底面圓的半徑為,由已知,,解得,所以圓錐的體積.故選:D【點(diǎn)睛】本題考查圓錐的體積的計(jì)算,涉及到圓錐的定義,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】試題分析:由題意得,因?yàn)閽佄锞€,即,即焦點(diǎn)到準(zhǔn)線的距離為.考點(diǎn):拋物線的性質(zhì).14、【解析】

建系,將直線用方程表示出來,再用參數(shù)表示出線段的長度,最后利用導(dǎo)數(shù)來求函數(shù)最小值.【詳解】以為原點(diǎn),所在直線分別作為軸,建立平面直角坐標(biāo)系,則.設(shè)直線,即,則,所以,所以,,則,則,當(dāng)時(shí),,則單調(diào)遞減,當(dāng)時(shí),,則單調(diào)遞增,所以當(dāng)時(shí),最短,此時(shí).故答案為:【點(diǎn)睛】本題考查導(dǎo)數(shù)的實(shí)際應(yīng)用,屬于中檔題.15、【解析】

由題意畫出圖形,補(bǔ)形為長方體,求其對角線長,可得四面體外接球的半徑,則表面積可求.【詳解】解:如圖,在四面體中,底面,,,可得,補(bǔ)形為長方體,則過一個(gè)頂點(diǎn)的三條棱長分別為1,1,,則長方體的對角線長為,則三棱錐的外接球的半徑為1.其表面積為.故答案為:.【點(diǎn)睛】本題考查多面體外接球表面積的求法,補(bǔ)形是關(guān)鍵,屬于中檔題.16、【解析】

根據(jù),可得,進(jìn)而,有,而,令,得到,再用導(dǎo)數(shù)法求解,【詳解】因?yàn)?,所以,所以,所以,所以,令,,所以,?dāng)時(shí),,當(dāng)時(shí),所以當(dāng)時(shí),取得最大值,又,所以取值范圍是,故答案為:【點(diǎn)睛】本題主要考查基本不等式的應(yīng)用和導(dǎo)數(shù)法求最值,還考查了運(yùn)算求解的能力,屬于難題,三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)又題意知,,及即可求得,從而得橢圓方程.(2)分三種情況:直線斜率不存在時(shí),的斜率為0時(shí),的斜率存在且不為0時(shí),設(shè)出直線方程,聯(lián)立方程組,用韋達(dá)定理和弦長公式以及四邊形的面積公式計(jì)算即可.【詳解】(1)由焦點(diǎn)與短軸兩端點(diǎn)的連線相互垂直及橢圓的對稱性可知,,∵過點(diǎn)且與軸垂直的直線被橢圓截得的線段長為.又,解得.∴橢圓的方程為(2)由(1)可知圓的方程為,(i)當(dāng)直線的斜率不存在時(shí),直線的斜率為0,此時(shí)(ii)當(dāng)直線的斜率為零時(shí),.(iii)當(dāng)直線的斜率存在且不等于零時(shí),設(shè)直線的方程為,聯(lián)立,得,設(shè)的橫坐標(biāo)分別為,則.所以,(注:的長度也可以用點(diǎn)到直線的距離和勾股定理計(jì)算.)由可得直線的方程為,聯(lián)立橢圓的方程消去,得設(shè)的橫坐標(biāo)為,則..綜上,由(i)(ii)(ⅲ)得的取值范圍是.【點(diǎn)睛】本題考查橢圓的標(biāo)準(zhǔn)方程與幾何性質(zhì)、直線與圓錐曲線的位置關(guān)系的應(yīng)用問題,解答此類題目,通常利用的關(guān)系,確定橢圓方程是基礎(chǔ);通過聯(lián)立直線方程與橢圓方程建立方程組,應(yīng)用一元二次方程根與系數(shù),得到目標(biāo)函數(shù)解析式,運(yùn)用函數(shù)知識求解;本題是難題.18、(1);(2).【解析】

(1)將直線和曲線化為普通方程,聯(lián)立直線和曲線,可得交點(diǎn)坐標(biāo),可得的值;(2)可得曲線的參數(shù)方程,利用點(diǎn)到直線的距離公式結(jié)合三角形的最值可得答案.【詳解】解:(1)直線的普通方程為,的普通方程.聯(lián)立方程組,解得與的交點(diǎn)為,,則.(2)曲線的參數(shù)方程為(為參數(shù)),故點(diǎn)的坐標(biāo)為,從而點(diǎn)到直線的距離是,由此當(dāng)時(shí),取得最小值,且最小值為.【點(diǎn)睛】本題主要考查參數(shù)方程與普通方程的轉(zhuǎn)化及參數(shù)方程的基本性質(zhì)、點(diǎn)到直線的距離公式等,屬于中檔題.19、【解析】

先將曲線C和直線l的極坐標(biāo)方程化為直角坐標(biāo)方程,可得圓心到直線的距離,再由勾股定理,計(jì)算即得.【詳解】以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,可得曲線C:()的直角坐標(biāo)方程為,表示以原點(diǎn)為圓心,半徑為r的圓.由直線l的方程,化簡得,則直線l的直角坐標(biāo)方程方程為.記圓心到直線l的距離為d,則,又,即,所以.【點(diǎn)睛】本題考查曲線和直線的極坐標(biāo)方程化為直角坐標(biāo)方程,是基礎(chǔ)題.20、(1)證明見解析;(2).【解析】

(1)通過證明面,即可由線面垂直推證面面垂直;(2)根據(jù)面,將問題轉(zhuǎn)化為求到面的距離,利用等體積法求點(diǎn)面距離即可.【詳解】(1)因?yàn)槔庵侵比庵杂?,所以面又,分別為AB,BC的中點(diǎn)所以//即面又面,所以平面平面(2)由(1)可知////所以//平面即點(diǎn)到平面的距離等于點(diǎn)到平面的距離設(shè)點(diǎn)到面的距離為由(1)可知,面且在中,,易知由等體積公式可知即由得所以到平面的距離等于【點(diǎn)睛】本題考查由線面垂直推證面面垂直,涉

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論