版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024學(xué)年重慶實(shí)驗(yàn)校中考三模數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.若a+b=3,,則ab等于()A.2 B.1 C.﹣2 D.﹣12.下列方程有實(shí)數(shù)根的是()A. B.C.x+2x?1=0 D.3.下列計(jì)算正確的是()A.a(chǎn)3﹣a2=a B.a(chǎn)2?a3=a6C.(a﹣b)2=a2﹣b2 D.(﹣a2)3=﹣a64.下列二次根式中,最簡二次根式是()A. B. C. D.5.在一個(gè)口袋中有4個(gè)完全相同的小球,把它們分別標(biāo)號(hào)為1,2,3,4,隨機(jī)地摸出一個(gè)小球然后放回,再隨機(jī)地摸出一個(gè)小球.則兩次摸出的小球的標(biāo)號(hào)的和等于6的概率為()A. B. C. D.6.下列各數(shù)中,最小的數(shù)是()A.﹣4B.3C.0D.﹣27.關(guān)于x的方程x2+(k2﹣4)x+k+1=0的兩個(gè)根互為相反數(shù),則k值是()A.﹣1 B.±2 C.2 D.﹣28.用6個(gè)相同的小正方體搭成一個(gè)幾何體,若它的俯視圖如圖所示,則它的主視圖不可能是()A. B. C. D.9.如圖,四邊形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,則DH=()A. B. C.12 D.2410.已知反比例函數(shù)y=﹣,當(dāng)﹣3<x<﹣2時(shí),y的取值范圍是()A.0<y<1 B.1<y<2 C.2<y<3 D.﹣3<y<﹣211.將拋物線y=﹣(x+1)2+4平移,使平移后所得拋物線經(jīng)過原點(diǎn),那么平移的過程為()A.向下平移3個(gè)單位 B.向上平移3個(gè)單位C.向左平移4個(gè)單位 D.向右平移4個(gè)單位12.下面四個(gè)立體圖形,從正面、左面、上面對(duì)空都不可能看到長方形的是A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖所示,點(diǎn)A1、A2、A3在x軸上,且OA1=A1A2=A2A3,分別過點(diǎn)A1、A2、A3作y軸的平行線,與反比例函數(shù)y=(x>0)的圖象分別交于點(diǎn)B1、B2、B3,分別過點(diǎn)B1、B2、B3作x軸的平行線,分別與y軸交于點(diǎn)C1、C2、C3,連接OB1、OB2、OB3,若圖中三個(gè)陰影部分的面積之和為,則k=.14.分解因式:8a3﹣8a2+2a=_____.15.計(jì)算(﹣a2b)3=__.16.如圖,在直角坐標(biāo)系中,點(diǎn)A(2,0),點(diǎn)B(0,1),過點(diǎn)A的直線l垂直于線段AB,點(diǎn)P是直線l上一動(dòng)點(diǎn),過點(diǎn)P作PC⊥x軸,垂足為C,把△ACP沿AP翻折,使點(diǎn)C落在點(diǎn)D處,若以A,D,P為頂點(diǎn)的三角形與△ABP相似,則所有滿足此條件的點(diǎn)P的坐標(biāo)為___________________________.17.在中,若,則的度數(shù)是______.18.中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一段記載:“三百七十八里關(guān),初日健步不為難,次日腳痛減一半,六朝才得到其關(guān).”其大意是:有人要去某關(guān)口,路程為378里,第一天健步行走,從第二天起,由于腳痛,每天走的路程都為前一天的一半,一共走了六天才到達(dá)目的地.求此人第六天走的路程為多少里.設(shè)此人第六天走的路程為x里,依題意,可列方程為________.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某中學(xué)為了提高學(xué)生的消防意識(shí),舉行了消防知識(shí)競賽,所有參賽學(xué)生分別設(shè)有一、二、三等獎(jiǎng)和紀(jì)念獎(jiǎng),獲獎(jiǎng)情況已繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖中所經(jīng)信息解答下列問題:(1)這次知識(shí)競賽共有多少名學(xué)生?(2)“二等獎(jiǎng)”對(duì)應(yīng)的扇形圓心角度數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;(3)小華參加了此次的知識(shí)競賽,請(qǐng)你幫他求出獲得“一等獎(jiǎng)或二等獎(jiǎng)”的概率.20.(6分)如圖,拋物線y=x2﹣2mx(m>0)與x軸的另一個(gè)交點(diǎn)為A,過P(1,﹣m)作PM⊥x軸于點(diǎn)M,交拋物線于點(diǎn)B,點(diǎn)B關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為C(1)若m=2,求點(diǎn)A和點(diǎn)C的坐標(biāo);(2)令m>1,連接CA,若△ACP為直角三角形,求m的值;(3)在坐標(biāo)軸上是否存在點(diǎn)E,使得△PEC是以P為直角頂點(diǎn)的等腰直角三角形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.21.(6分)如圖,在平面直角坐標(biāo)系中有三點(diǎn)(1,2),(3,1),(-2,-1),其中有兩點(diǎn)同時(shí)在反比例函數(shù)的圖象上,將這兩點(diǎn)分別記為A,B,另一點(diǎn)記為C,(1)求出的值;(2)求直線AB對(duì)應(yīng)的一次函數(shù)的表達(dá)式;(3)設(shè)點(diǎn)C關(guān)于直線AB的對(duì)稱點(diǎn)為D,P是軸上的一個(gè)動(dòng)點(diǎn),直接寫出PC+PD的最小值(不必說明理由).22.(8分)隨著地鐵和共享單車的發(fā)展,“地鐵+單車”已經(jīng)成為很多市民出行的選擇.李華從文化宮站出發(fā),先乘坐地鐵,準(zhǔn)備在離家較近的A,B,C,D,E中的某一站出地鐵,再騎共享單車回家.設(shè)他出地鐵的站點(diǎn)與文化宮距離為x(單位:千米),乘坐地鐵的時(shí)間(單位:分鐘)是關(guān)于x的一次函數(shù),其關(guān)系如下表:地鐵站ABCDEX(千米)891011.513(分鐘)1820222528(1)求關(guān)于x的函數(shù)表達(dá)式;李華騎單車的時(shí)間(單位:分鐘)也受x的影響,其關(guān)系可以用來描述.請(qǐng)問:李華應(yīng)選擇在哪一站出地鐵,才能使他從文化宮回到家所需的時(shí)間最短?并求出最短時(shí)間.23.(8分)甲、乙兩個(gè)商場出售相同的某種商品,每件售價(jià)均為3000元,并且多買都有一定的優(yōu)惠.甲商場的優(yōu)惠條件是:第一件按原售價(jià)收費(fèi),其余每件優(yōu)惠30%;乙商場的優(yōu)惠條件是:每件優(yōu)惠25%.設(shè)所買商品為x件時(shí),甲商場收費(fèi)為y1元,乙商場收費(fèi)為y2元.分別求出y1,y2與x之間的關(guān)系式;當(dāng)甲、乙兩個(gè)商場的收費(fèi)相同時(shí),所買商品為多少件?當(dāng)所買商品為5件時(shí),應(yīng)選擇哪個(gè)商場更優(yōu)惠?請(qǐng)說明理由.24.(10分)已知反比例函數(shù)的圖象經(jīng)過三個(gè)點(diǎn)A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>1.(1)當(dāng)y1﹣y2=4時(shí),求m的值;(2)如圖,過點(diǎn)B、C分別作x軸、y軸的垂線,兩垂線相交于點(diǎn)D,點(diǎn)P在x軸上,若三角形PBD的面積是8,請(qǐng)寫出點(diǎn)P坐標(biāo)(不需要寫解答過程).25.(10分)在平面直角坐標(biāo)系中,二次函數(shù)y=x2+ax+2a+1的圖象經(jīng)過點(diǎn)M(2,-3)。(1)求二次函數(shù)的表達(dá)式;(2)若一次函數(shù)y=kx+b(k≠0)的圖象與二次函數(shù)y=x2+ax+2a+1的圖象經(jīng)過x軸上同一點(diǎn),探究實(shí)數(shù)k,b滿足的關(guān)系式;(3)將二次函數(shù)y=x2+ax+2a+1的圖象向右平移2個(gè)單位,若點(diǎn)P(x0,m)和Q(2,n)在平移后的圖象上,且m>n,結(jié)合圖象求x0的取值范圍.26.(12分)今年3月12日植樹節(jié)期間,學(xué)校預(yù)購進(jìn)A,B兩種樹苗.若購進(jìn)A種樹苗3棵,B種樹苗5棵,需2100元;若購進(jìn)A種樹苗4棵,B種樹苗10棵,需3800元.求購進(jìn)A,B兩種樹苗的單價(jià);若該學(xué)校準(zhǔn)備用不多于8000元的錢購進(jìn)這兩種樹苗共30棵,求A種樹苗至少需購進(jìn)多少棵.27.(12分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點(diǎn)D,DE交AC于點(diǎn)E,且∠A=∠ADE.(1)求證:DE是⊙O的切線;(2)若AD=16,DE=10,求BC的長.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解題分析】
∵a+b=3,∴(a+b)2=9∴a2+2ab+b2=9∵a2+b2=7∴7+2ab=9,7+2ab=9∴ab=1.故選B.考點(diǎn):完全平方公式;整體代入.2、C【解題分析】分析:根據(jù)方程解的定義,一一判斷即可解決問題;詳解:A.∵x4>0,∴x4+2=0無解;故本選項(xiàng)不符合題意;B.∵≥0,∴=﹣1無解,故本選項(xiàng)不符合題意;C.∵x2+2x﹣1=0,△=8=4=12>0,方程有實(shí)數(shù)根,故本選項(xiàng)符合題意;D.解分式方程=,可得x=1,經(jīng)檢驗(yàn)x=1是分式方程的增根,故本選項(xiàng)不符合題意.故選C.點(diǎn)睛:本題考查了無理方程、根的判別式、高次方程、分式方程等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考??碱}型.3、D【解題分析】各項(xiàng)計(jì)算得到結(jié)果,即可作出判斷.解:A、原式不能合并,不符合題意;B、原式=a5,不符合題意;C、原式=a2﹣2ab+b2,不符合題意;D、原式=﹣a6,符合題意,故選D4、C【解題分析】
檢查最簡二次根式的兩個(gè)條件是否同時(shí)滿足,同時(shí)滿足的就是最簡二次根式,否則就不是.【題目詳解】A.被開方數(shù)含能開得盡方的因數(shù)或因式,故A不符合題意,B.被開方數(shù)含能開得盡方的因數(shù)或因式,故B不符合題意,C.被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因數(shù)或因式,故C符合題意,D.被開方數(shù)含分母,故D不符合題意.故選C.【題目點(diǎn)撥】本題考查最簡二次根式的定義,最簡二次根式必須滿足兩個(gè)條件:被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因數(shù)或因式.5、C【解題分析】列舉出所有情況,看兩次摸出的小球的標(biāo)號(hào)的和等于6的情況數(shù)占總情況數(shù)的多少即可.解:共16種情況,和為6的情況數(shù)有3種,所以概率為.故選C.6、A【解題分析】
有理數(shù)大小比較的法則:①正數(shù)都大于0;②負(fù)數(shù)都小于0;③正數(shù)大于一切負(fù)數(shù);④兩個(gè)負(fù)數(shù),絕對(duì)值大的其值反而小,據(jù)此判斷即可【題目詳解】根據(jù)有理數(shù)比較大小的方法,可得﹣4<﹣2<0<3∴各數(shù)中,最小的數(shù)是﹣4故選:A【題目點(diǎn)撥】本題考查了有理數(shù)大小比較的方法,解題的關(guān)鍵要明確:①正數(shù)都大于0;②負(fù)數(shù)都小于0;③正數(shù)大于一切負(fù)數(shù);④兩個(gè)負(fù)數(shù),絕對(duì)值大的其值反而小7、D【解題分析】
根據(jù)一元二次方程根與系數(shù)的關(guān)系列出方程求解即可.【題目詳解】設(shè)方程的兩根分別為x1,x1,
∵x1+(k1-4)x+k-1=0的兩實(shí)數(shù)根互為相反數(shù),
∴x1+x1,=-(k1-4)=0,解得k=±1,
當(dāng)k=1,方程變?yōu)椋簒1+1=0,△=-4<0,方程沒有實(shí)數(shù)根,所以k=1舍去;
當(dāng)k=-1,方程變?yōu)椋簒1-3=0,△=11>0,方程有兩個(gè)不相等的實(shí)數(shù)根;
∴k=-1.
故選D.【題目點(diǎn)撥】本題考查的是根與系數(shù)的關(guān)系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的兩根時(shí),x1+x1=?,x1x1=,反過來也成立.8、D【解題分析】分析:根據(jù)主視圖和俯視圖之間的關(guān)系可以得出答案.詳解:∵主視圖和俯視圖的長要相等,∴只有D選項(xiàng)中的長和俯視圖不相等,故選D.點(diǎn)睛:本題主要考查的就是三視圖的畫法,屬于基礎(chǔ)題型.三視圖的畫法為:主視圖和俯視圖的長要相等;主視圖和左視圖的高要相等;左視圖和俯視圖的寬要相等.9、A【解題分析】
解:如圖,設(shè)對(duì)角線相交于點(diǎn)O,∵AC=8,DB=6,∴AO=AC=×8=4,BO=BD=×6=3,由勾股定理的,AB===5,∵DH⊥AB,∴S菱形ABCD=AB?DH=AC?BD,即5DH=×8×6,解得DH=.故選A.【題目點(diǎn)撥】本題考查菱形的性質(zhì).10、C【解題分析】分析:由題意易得當(dāng)﹣3<x<﹣2時(shí),函數(shù)的圖象位于第二象限,且y隨x的增大而增大,再計(jì)算出當(dāng)x=-3和x=-2時(shí)對(duì)應(yīng)的函數(shù)值,即可作出判斷了.詳解:∵在中,﹣6<0,∴當(dāng)﹣3<x<﹣2時(shí)函數(shù)的圖象位于第二象限內(nèi),且y隨x的增大而增大,∵當(dāng)x=﹣3時(shí),y=2,當(dāng)x=﹣2時(shí),y=3,∴當(dāng)﹣3<x<﹣2時(shí),2<y<3,故選C.點(diǎn)睛:熟悉“反比例函數(shù)的圖象和性質(zhì)”是正確解答本題的關(guān)鍵.11、A【解題分析】將拋物線平移,使平移后所得拋物線經(jīng)過原點(diǎn),若左右平移n個(gè)單位得到,則平移后的解析式為:,將(0,0)代入后解得:n=-3或n=1,所以向左平移1個(gè)單位或向右平移3個(gè)單位后拋物線經(jīng)過原點(diǎn);若上下平移m個(gè)單位得到,則平移后的解析式為:,將(0,0)代入后解得:m=-3,所以向下平移3個(gè)單位后拋物線經(jīng)過原點(diǎn),故選A.12、B【解題分析】
主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形依此找到從正面、左面、上面觀察都不可能看到長方形的圖形.【題目詳解】解:A、主視圖為三角形,左視圖為三角形,俯視圖為有對(duì)角線的矩形,故本選項(xiàng)錯(cuò)誤;B、主視圖為等腰三角形,左視圖為等腰三角形,俯視圖為圓,從正面、左面、上面觀察都不可能看到長方形,故本選項(xiàng)正確;C、主視圖為長方形,左視圖為長方形,俯視圖為圓,故本選項(xiàng)錯(cuò)誤;D、主視圖為長方形,左視圖為長方形,俯視圖為長方形,故本選項(xiàng)錯(cuò)誤.故選:B.【題目點(diǎn)撥】本題重點(diǎn)考查三視圖的定義以及考查學(xué)生的空間想象能力.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、1.【解題分析】
先根據(jù)反比例函數(shù)比例系數(shù)k的幾何意義得到,再根據(jù)相似三角形的面積比等于相似比的平方,得到用含k的代數(shù)式表示3個(gè)陰影部分的面積之和,然后根據(jù)三個(gè)陰影部分的面積之和為,列出方程,解方程即可求出k的值.【題目詳解】解:根據(jù)題意可知,軸,設(shè)圖中陰影部分的面積從左向右依次為,則,,解得:k=2.故答案為1.考點(diǎn):反比例函數(shù)綜合題.14、2a(2a﹣1)2【解題分析】
提取2a,再將剩下的4a2-4a+1用完全平方和公式配出(2a﹣1)2,即可得出答案.【題目詳解】原式=2a(4a2-4a+1)=2a(2a﹣1)2.【題目點(diǎn)撥】本題考查了因式分解,仔細(xì)觀察題目并提取公因式是解決本題的關(guān)鍵.15、?a6b3【解題分析】
根據(jù)積的乘方和冪的乘方法則計(jì)算即可.【題目詳解】原式=(﹣a2b)3=?a6b3,故答案為?a6b3.【題目點(diǎn)撥】本題考查了積的乘方和冪的乘方,關(guān)鍵是掌握運(yùn)算法則.16、【解題分析】∵點(diǎn)A(2,0),點(diǎn)B(0,1),∴OA=2,OB=1,.∵l⊥AB,∴∠PAC+OAB=90°.∵∠OBA+∠OAB=90°,∴∠OBA=∠PAC.∵∠AOB=∠ACP,∴△ABO∽△PAC,.設(shè)AC=m,PC=2m,.當(dāng)點(diǎn)P在x軸的上方時(shí),由得,,,,PC=1,,由得,,∴m=2,∴AC=2,PC=4,∴OC=2+2=4,∴P(4,4).當(dāng)點(diǎn)P在x軸的下方時(shí),由得,,,,PC=1,,由得,,∴m=2,∴AC=2,PC=4,∴OC=2-2=0,∴P(0,4).所以P點(diǎn)坐標(biāo)為或(4,4)或或(0,4)【題目點(diǎn)撥】本題考察了相似三角形的判定,相似三角形的性質(zhì),平面直角坐標(biāo)系點(diǎn)的坐標(biāo)及分類討論的思想.在利用相似三角形的性質(zhì)列比例式時(shí),要找好對(duì)應(yīng)邊,如果對(duì)應(yīng)邊不確定,要分類討論.因點(diǎn)P在x軸上方和下方得到的結(jié)果也不一樣,所以要分兩種情況求解.請(qǐng)?jiān)诖颂顚懕绢}解析!17、【解題分析】
先根據(jù)非負(fù)數(shù)的性質(zhì)求出,,再由特殊角的三角函數(shù)值求出與的值,根據(jù)三角形內(nèi)角和定理即可得出結(jié)論.【題目詳解】在中,,,,,,,故答案為:.【題目點(diǎn)撥】本題考查了非負(fù)數(shù)的性質(zhì)以及特殊角的三角函數(shù)值,熟練掌握特殊角的三角函數(shù)值是解題的關(guān)鍵.18、;【解題分析】
設(shè)第一天走了x里,則第二天走了里,第三天走了里…第六天走了里,根據(jù)總路程為378里列出方程可得答案.【題目詳解】解:設(shè)第一天走了x里,則第二天走了里,第三天走了里…第六天走了里,依題意得:,故答案:.【題目點(diǎn)撥】本題主要考查由實(shí)際問題抽象出一元一次方程.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)200;(2)72°,作圖見解析;(3).【解題分析】
(1)用一等獎(jiǎng)的人數(shù)除以所占的百分比求出總?cè)藬?shù);(2)用總?cè)藬?shù)乘以二等獎(jiǎng)的人數(shù)所占的百分比求出二等獎(jiǎng)的人數(shù),補(bǔ)全統(tǒng)計(jì)圖,再用360°乘以二等獎(jiǎng)的人數(shù)所占的百分比即可求出“二等獎(jiǎng)”對(duì)應(yīng)的扇形圓心角度數(shù);(3)用獲得一等獎(jiǎng)和二等獎(jiǎng)的人數(shù)除以總?cè)藬?shù)即可得出答案.【題目詳解】解:(1)這次知識(shí)競賽共有學(xué)生=200(名);(2)二等獎(jiǎng)的人數(shù)是:200×(1﹣10%﹣24%﹣46%)=40(人),補(bǔ)圖如下:“二等獎(jiǎng)”對(duì)應(yīng)的扇形圓心角度數(shù)是:360°×=72°;(3)小華獲得“一等獎(jiǎng)或二等獎(jiǎng)”的概率是:=.【題目點(diǎn)撥】本題主要考查了條形統(tǒng)計(jì)圖以及扇形統(tǒng)計(jì)圖,利用統(tǒng)計(jì)圖獲取信息是解本題的關(guān)鍵.20、(1)A(4,0),C(3,﹣3);(2)m=;(3)E點(diǎn)的坐標(biāo)為(2,0)或(,0)或(0,﹣4);【解題分析】
方法一:(1)m=2時(shí),函數(shù)解析式為y=,分別令y=0,x=1,即可求得點(diǎn)A和點(diǎn)B的坐標(biāo),進(jìn)而可得到點(diǎn)C的坐標(biāo);(2)先用m表示出P,AC三點(diǎn)的坐標(biāo),分別討論∠APC=,∠ACP=,∠PAC=三種情況,利用勾股定理即可求得m的值;(3)設(shè)點(diǎn)F(x,y)是直線PE上任意一點(diǎn),過點(diǎn)F作FN⊥PM于N,可得Rt△FNP∽R(shí)t△PBC,NP:NF=BC:BP求得直線PE的解析式,后利用△PEC是以P為直角頂點(diǎn)的等腰直角三角形求得E點(diǎn)坐標(biāo).方法二:(1)同方法一.(2)由△ACP為直角三角形,由相互垂直的兩直線斜率相乘為-1,可得m的值;(3)利用△PEC是以P為直角頂點(diǎn)的等腰直角三角形,分別討論E點(diǎn)再x軸上,y軸上的情況求得E點(diǎn)坐標(biāo).【題目詳解】方法一:解:(1)若m=2,拋物線y=x2﹣2mx=x2﹣4x,∴對(duì)稱軸x=2,令y=0,則x2﹣4x=0,解得x=0,x=4,∴A(4,0),∵P(1,﹣2),令x=1,則y=﹣3,∴B(1,﹣3),∴C(3,﹣3).(2)∵拋物線y=x2﹣2mx(m>1),∴A(2m,0)對(duì)稱軸x=m,∵P(1,﹣m)把x=1代入拋物線y=x2﹣2mx,則y=1﹣2m,∴B(1,1﹣2m),∴C(2m﹣1,1﹣2m),∵PA2=(﹣m)2+(2m﹣1)2=5m2﹣4m+1,PC2=(2m﹣2)2+(1﹣m)2=5m2﹣10m+5,AC2=1+(1﹣2m)2=2﹣4m+4m2,∵△ACP為直角三角形,∴當(dāng)∠ACP=90°時(shí),PA2=PC2+AC2,即5m2﹣4m+1=5m2﹣10m+5+2﹣4m+4m2,整理得:4m2﹣10m+6=0,解得:m=,m=1(舍去),當(dāng)∠APC=90°時(shí),PA2+PC2=AC2,即5m2﹣4m+1+5m2﹣10m+5=2﹣4m+4m2,整理得:6m2﹣10m+4=0,解得:m=,m=1,和1都不符合m>1,故m=.(3)設(shè)點(diǎn)F(x,y)是直線PE上任意一點(diǎn),過點(diǎn)F作FN⊥PM于N,∵∠FPN=∠PCB,∠PNF=∠CBP=90°,∴Rt△FNP∽R(shí)t△PBC,∴NP:NF=BC:BP,即=,∴y=2x﹣2﹣m,∴直線PE的解析式為y=2x﹣2﹣m.令y=0,則x=1+,∴E(1+m,0),∴PE2=(﹣m)2+(m)2=,∴=5m2﹣10m+5,解得:m=2,m=,∴E(2,0)或E(,0),∴在x軸上存在E點(diǎn),使得△PEC是以P為直角頂點(diǎn)的等腰直角三角形,此時(shí)E(2,0)或E(,0);令x=0,則y=﹣2﹣m,∴E(0,﹣2﹣m)∴PE2=(﹣2)2+12=5∴5m2﹣10m+5=5,解得m=2,m=0(舍去),∴E(0,﹣4)∴y軸上存在點(diǎn)E,使得△PEC是以P為直角頂點(diǎn)的等腰直角三角形,此時(shí)E(0,﹣4),∴在坐標(biāo)軸上是存在點(diǎn)E,使得△PEC是以P為直角頂點(diǎn)的等腰直角三角形,E點(diǎn)的坐標(biāo)為(2,0)或(,0)或(0,﹣4);方法二:(1)略.(2)∵P(1,﹣m),∴B(1,1﹣2m),∵對(duì)稱軸x=m,∴C(2m﹣1,1﹣2m),A(2m,0),∵△ACP為直角三角形,∴AC⊥AP,AC⊥CP,AP⊥CP,①AC⊥AP,∴KAC×KAP=﹣1,且m>1,∴,m=﹣1(舍)②AC⊥CP,∴KAC×KCP=﹣1,且m>1,∴=﹣1,∴m=,③AP⊥CP,∴KAP×KCP=﹣1,且m>1,∴=﹣1,∴m=(舍)(3)∵P(1,﹣m),C(2m﹣1,1﹣2m),∴KCP=,△PEC是以P為直角頂點(diǎn)的等腰直角三角形,∴PE⊥PC,∴KPE×KCP=﹣1,∴KPE=2,∵P(1,﹣m),∴l(xiāng)PE:y=2x﹣2﹣m,∵點(diǎn)E在坐標(biāo)軸上,∴①當(dāng)點(diǎn)E在x軸上時(shí),E(,0)且PE=PC,∴(1﹣)2+(﹣m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,∴m2=5(m﹣1)2,∴m1=2,m2=,∴E1(2,0),E2(,0),②當(dāng)點(diǎn)E在y軸上時(shí),E(0,﹣2﹣m)且PE=PC,∴(1﹣0)2+(﹣m+2+m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,∴1=(m﹣1)2,∴m1=2,m2=0(舍),∴E(0,4),綜上所述,(2,0)或(,0)或(0,﹣4).【題目點(diǎn)撥】本題主要考查二次函數(shù)的圖象與性質(zhì).擴(kuò)展:設(shè)坐標(biāo)系中兩點(diǎn)坐標(biāo)分別為點(diǎn)A(),點(diǎn)B(),則線段AB的長度為:AB=.設(shè)平面內(nèi)直線AB的解析式為:,直線CD的解析式為:(1)若AB//CD,則有:;(2)若AB⊥CD,則有:.21、(2)2;(2)y=x+2;(3).【解題分析】
(2)確定A、B、C的坐標(biāo)即可解決問題;(2)理由待定系數(shù)法即可解決問題;(3)作D關(guān)于x軸的對(duì)稱點(diǎn)D′(0,-4),連接CD′交x軸于P,此時(shí)PC+PD的值最小,最小值=CD′的長.【題目詳解】解:(2)∵反比例函數(shù)y=的圖象上的點(diǎn)橫坐標(biāo)與縱坐標(biāo)的積相同,∴A(2,2),B(-2,-2),C(3,2)∴k=2.(2)設(shè)直線AB的解析式為y=mx+n,則有,解得,∴直線AB的解析式為y=x+2.(3)∵C、D關(guān)于直線AB對(duì)稱,∴D(0,4)作D關(guān)于x軸的對(duì)稱點(diǎn)D′(0,-4),連接CD′交x軸于P,此時(shí)PC+PD的值最小,最小值=CD′=.【題目點(diǎn)撥】本題考查反比例函數(shù)圖象上的點(diǎn)的特征,一次函數(shù)的性質(zhì)、反比例函數(shù)的性質(zhì)、軸對(duì)稱最短問題等知識(shí),解題的關(guān)鍵是熟練掌握待定系數(shù)法確定函數(shù)解析式,學(xué)會(huì)利用軸對(duì)稱解決最短問題.22、(1)y1=2x+2;(2)選擇在B站出地鐵,最短時(shí)間為39.5分鐘.【解題分析】
(1)根據(jù)表格中的數(shù)據(jù),運(yùn)用待定系數(shù)法,即可求得y1關(guān)于x的函數(shù)表達(dá)式;(2)設(shè)李華從文化宮回到家所需的時(shí)間為y,則y=y1+y2=x2-9x+80,根據(jù)二次函數(shù)的性質(zhì),即可得出最短時(shí)間.【題目詳解】(1)設(shè)y1=kx+b,將(8,18),(9,20),代入y1=kx+b,得:解得所以y1關(guān)于x的函數(shù)解析式為y1=2x+2.(2)設(shè)李華從文化宮回到家所需的時(shí)間為y,則y=y1+y2=2x+2+x2-11x+78=x2-9x+80=(x-9)2+39.5.所以當(dāng)x=9時(shí),y取得最小值,最小值為39.5,答:李華應(yīng)選擇在B站出地鐵,才能使他從文化宮回到家所需的時(shí)間最短,最短時(shí)間為39.5分鐘.【題目點(diǎn)撥】本題主要考查了二次函數(shù)的應(yīng)用,解此類題的關(guān)鍵是通過題意,確定出二次函數(shù)的解析式,然后確定其最大值最小值,在求二次函數(shù)的最值時(shí),一定要注意自變量x的取值范圍.23、(1);y2=2250x;(2)甲、乙兩個(gè)商場的收費(fèi)相同時(shí),所買商品為6件;(3)所買商品為5件時(shí),應(yīng)選擇乙商場更優(yōu)惠.【解題分析】試題分析:(1)由兩家商場的優(yōu)惠方案分別列式整理即可;(2)由收費(fèi)相同,列出方程求解即可;(3)由函數(shù)解析式分別求出x=5時(shí)的函數(shù)值,即可得解試題解析:(1)當(dāng)x=1時(shí),y1=3000;當(dāng)x>1時(shí),y1=3000+3000(x﹣1)×(1﹣30%)=2100x+1.∴;y2=3000x(1﹣25%)=2250x,∴y2=2250x;(2)當(dāng)甲、乙兩個(gè)商場的收費(fèi)相同時(shí),2100x+1=2250x,解得x=6,答:甲、乙兩個(gè)商場的收費(fèi)相同時(shí),所買商品為6件;(3)x=5時(shí),y1=2100x+1=2100×5+1=11400,y2=2250x=2250×5=11250,∵11400>11250,∴所買商品為5件時(shí),應(yīng)選擇乙商場更優(yōu)惠.考點(diǎn):一次函數(shù)的應(yīng)用24、(1)m=1;(2)點(diǎn)P坐標(biāo)為(﹣2m,1)或(6m,1).【解題分析】
(1)先根據(jù)反比例函數(shù)的圖象經(jīng)過點(diǎn)A(﹣4,﹣3),利用待定系數(shù)法求出反比例函數(shù)的解析式為y=12x,再由反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征得出y1=122m=6m,y2=126m=2m,然后根據(jù)y1﹣y2(2)設(shè)BD與x軸交于點(diǎn)E.根據(jù)三角形PBD的面積是8列出方程12?4【題目詳解】解:(1)設(shè)反比例函數(shù)的解析式為y=kx∵反比例函數(shù)的圖象經(jīng)過點(diǎn)A(﹣4,﹣3),∴k=﹣4×(﹣3)=12,∴反比例函數(shù)的解析式為y=12x∵反比例函數(shù)的圖象經(jīng)過點(diǎn)B(2m,y1),C(6m,y2),∴y1=122m=6m,y2=126m∵y1﹣y2=4,∴6m﹣2∴m=1,經(jīng)檢驗(yàn),m=1是原方程的解,故m的值是1;(2)設(shè)BD與x軸交于點(diǎn)E,∵點(diǎn)B(2m,6m),C(6m,2∴D(2m,2m),BD=6m﹣2m∵三角形PBD的面積是8,∴12∴12?4∴PE=4m,∵E(2m,1),點(diǎn)P在x軸上,∴點(diǎn)P坐標(biāo)為(﹣2m,1)或(6m,1).【題目點(diǎn)撥】本題考查了待定系數(shù)法求反比例函數(shù)的解析式,反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征以及三角形的面積,正確求出雙曲線的解析式是解題的關(guān)鍵.25、(1)y=x2-2x-3;(2)k=b;(3)x0<2或x0>1.【解題分析】
(1)將點(diǎn)M坐標(biāo)代入y=x2+ax+2a+1,求出a的值,進(jìn)而可得到二次函數(shù)表達(dá)式;(2)先求出拋物線與x軸的交點(diǎn),將交點(diǎn)代入一次函數(shù)解析式,即可得到k,b滿足的關(guān)系;(3)先求出平移后的新拋物線的解析式,確定新拋物線的對(duì)稱軸以及Q的對(duì)稱點(diǎn)Q′,根據(jù)m>n結(jié)合圖像即可得到x0的取值范圍.【題目詳解】(1)把M(2,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)四年級(jí)下班主任工作計(jì)劃范文
- 教師教學(xué)工作計(jì)劃范文五篇
- 三年級(jí)上學(xué)期語文教學(xué)計(jì)劃合集5篇
- 心理工作計(jì)劃
- 2022年高中德育工作計(jì)劃
- 高中數(shù)學(xué)教學(xué)工作計(jì)劃模板匯編五篇
- 2022高考滿分作文寫酒
- 銀行主任競聘演講稿三篇
- 下學(xué)期工作計(jì)劃
- 2022國慶節(jié)創(chuàng)意活動(dòng)方案流程策劃
- 基于STM32的智能溫控風(fēng)扇設(shè)計(jì)
- 交易所商業(yè)計(jì)劃書
- 2024年華電江蘇能源有限公司招聘筆試參考題庫含答案解析
- 遠(yuǎn)程銀行行業(yè)背景分析
- 如何提高孩子的注意力和專注力
- 2022-2023學(xué)年海南省??谑兄攸c(diǎn)中學(xué)八年級(jí)(上)期末物理試卷(含解析)
- 膽石癥教案完
- 護(hù)士個(gè)人優(yōu)點(diǎn)和缺點(diǎn)(六篇)
- 教師管理培訓(xùn)系統(tǒng)的設(shè)計(jì)與開發(fā)
- 2021年新高考語文Ⅰ卷真題現(xiàn)代文閱讀《石門陣》解析
- 老化測試記錄表
評(píng)論
0/150
提交評(píng)論