版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
重慶市渝高中學2024屆高三下學期期末教學質(zhì)量監(jiān)測數(shù)學試題文試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.隨著人民生活水平的提高,對城市空氣質(zhì)量的關注度也逐步增大,下圖是某城市月至月的空氣質(zhì)量檢測情況,圖中一、二、三、四級是空氣質(zhì)量等級,一級空氣質(zhì)量最好,一級和二級都是質(zhì)量合格天氣,下面敘述不正確的是()A.1月至8月空氣合格天數(shù)超過天的月份有個B.第二季度與第一季度相比,空氣達標天數(shù)的比重下降了C.8月是空氣質(zhì)量最好的一個月D.6月份的空氣質(zhì)量最差.2.設不等式組表示的平面區(qū)域為,若從圓:的內(nèi)部隨機選取一點,則取自的概率為()A. B. C. D.3.已知函,,則的最小值為()A. B.1 C.0 D.4.已知四棱錐中,平面,底面是邊長為2的正方形,,為的中點,則異面直線與所成角的余弦值為()A. B. C. D.5.曲線上任意一點處的切線斜率的最小值為()A.3 B.2 C. D.16.將函數(shù)圖象上每一點的橫坐標變?yōu)樵瓉淼?倍,再將圖像向左平移個單位長度,得到函數(shù)的圖象,則函數(shù)圖象的一個對稱中心為()A. B. C. D.7.已知函數(shù)是上的偶函數(shù),是的奇函數(shù),且,則的值為()A. B. C. D.8.若均為任意實數(shù),且,則的最小值為()A. B. C. D.9.已知雙曲線C的兩條漸近線的夾角為60°,則雙曲線C的方程不可能為()A. B. C. D.10.下列函數(shù)中,既是奇函數(shù),又是上的單調(diào)函數(shù)的是()A. B.C. D.11.若雙曲線的離心率,則該雙曲線的焦點到其漸近線的距離為()A. B.2 C. D.112.已知雙曲線的右焦點為,過原點的直線與雙曲線的左、右兩支分別交于兩點,延長交右支于點,若,則雙曲線的離心率是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若的展開式中各項系數(shù)之和為32,則展開式中x的系數(shù)為_____14.在中,內(nèi)角所對的邊分別為,若,的面積為,則_______,_______.15.某外商計劃在個候選城市中投資個不同的項目,且在同一個城市投資的項目不超過個,則該外商不同的投資方案有____種.16.已知一組數(shù)據(jù)1.6,1.8,2,2.2,2.4,則該組數(shù)據(jù)的方差是_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面ABCD平面PAD,,,,,E是PD的中點.證明:;設,點M在線段PC上且異面直線BM與CE所成角的余弦值為,求二面角的余弦值.18.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),為上的動點,點滿足,點的軌跡為曲線.(Ⅰ)求的方程;(Ⅱ)在以為極點,軸的正半軸為極軸的極坐標系中,射線與的異于極點的交點為,與的異于極點的交點為,求.19.(12分)(某工廠生產(chǎn)零件A,工人甲生產(chǎn)一件零件A,是一等品、二等品、三等品的概率分別為,工人乙生產(chǎn)一件零件A,是一等品、二等品、三等品的概率分別為.己知生產(chǎn)一件一等品、二等品、三等品零件A給工廠帶來的效益分別為10元、5元、2元.(1)試根據(jù)生產(chǎn)一件零件A給工廠帶來的效益的期望值判斷甲乙技術的好壞;(2)為鼓勵工人提高技術,工廠進行技術大賽,最后甲乙兩人進入了決賽.決賽規(guī)則是:每一輪比賽,甲乙各生產(chǎn)一件零件A,如果一方生產(chǎn)的零件A品級優(yōu)干另一方生產(chǎn)的零件,則該方得分1分,另一方得分-1分,如果兩人生產(chǎn)的零件A品級一樣,則兩方都不得分,當一方總分為4分時,比賽結束,該方獲勝.Pi+4(i=4,3,2,…,4)表示甲總分為i時,最終甲獲勝的概率.①寫出P0,P8的值;②求決賽甲獲勝的概率.20.(12分)已知函數(shù).(1)當時,解關于的不等式;(2)若對任意,都存在,使得不等式成立,求實數(shù)的取值范圍.21.(12分)已知,,,.(1)求的值;(2)求的值.22.(10分)如圖,兩座建筑物AB,CD的底部都在同一個水平面上,且均與水平面垂直,它們的高度分別是10m和20m,從建筑物AB的頂部A看建筑物CD的視角∠CAD=60°.(1)求BC的長度;(2)在線段BC上取一點P(點P與點B,C不重合),從點P看這兩座建筑物的視角分別為∠APB=α,∠DPC=β,問點P在何處時,α+β最?。?/p>
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】由圖表可知月空氣質(zhì)量合格天氣只有天,月份的空氣質(zhì)量最差.故本題答案選.2、B【解題分析】
畫出不等式組表示的可行域,求得陰影部分扇形對應的圓心角,根據(jù)幾何概型概率計算公式,計算出所求概率.【題目詳解】作出中在圓內(nèi)部的區(qū)域,如圖所示,因為直線,的傾斜角分別為,,所以由圖可得取自的概率為.故選:B【題目點撥】本小題主要考查幾何概型的計算,考查線性可行域的畫法,屬于基礎題.3、B【解題分析】
,利用整體換元法求最小值.【題目詳解】由已知,又,,故當,即時,.故選:B.【題目點撥】本題考查整體換元法求正弦型函數(shù)的最值,涉及到二倍角公式的應用,是一道中檔題.4、B【解題分析】
由題意建立空間直角坐標系,表示出各點坐標后,利用即可得解.【題目詳解】平面,底面是邊長為2的正方形,如圖建立空間直角坐標系,由題意:,,,,,為的中點,.,,,異面直線與所成角的余弦值為即為.故選:B.【題目點撥】本題考查了空間向量的應用,考查了空間想象能力,屬于基礎題.5、A【解題分析】
根據(jù)題意,求導后結合基本不等式,即可求出切線斜率,即可得出答案.【題目詳解】解:由于,根據(jù)導數(shù)的幾何意義得:,即切線斜率,當且僅當?shù)忍柍闪?,所以上任意一點處的切線斜率的最小值為3.故選:A.【題目點撥】本題考查導數(shù)的幾何意義的應用以及運用基本不等式求最值,考查計算能力.6、D【解題分析】
根據(jù)函數(shù)圖象的變換規(guī)律可得到解析式,然后將四個選項代入逐一判斷即可.【題目詳解】解:圖象上每一點的橫坐標變?yōu)樵瓉淼?倍,得到再將圖像向左平移個單位長度,得到函數(shù)的圖象,故選:D【題目點撥】考查三角函數(shù)圖象的變換規(guī)律以及其有關性質(zhì),基礎題.7、B【解題分析】
根據(jù)函數(shù)的奇偶性及題設中關于與關系,轉換成關于的關系式,通過變形求解出的周期,進而算出.【題目詳解】為上的奇函數(shù),,而函數(shù)是上的偶函數(shù),,,故為周期函數(shù),且周期為故選:B【題目點撥】本題主要考查了函數(shù)的奇偶性,函數(shù)的周期性的應用,屬于基礎題.8、D【解題分析】
該題可以看做是圓上的動點到曲線上的動點的距離的平方的最小值問題,可以轉化為圓心到曲線上的動點的距離減去半徑的平方的最值問題,結合圖形,可以斷定那個點應該滿足與圓心的連線與曲線在該點的切線垂直的問題來解決,從而求得切點坐標,即滿足條件的點,代入求得結果.【題目詳解】由題意可得,其結果應為曲線上的點與以為圓心,以為半徑的圓上的點的距離的平方的最小值,可以求曲線上的點與圓心的距離的最小值,在曲線上取一點,曲線有在點M處的切線的斜率為,從而有,即,整理得,解得,所以點滿足條件,其到圓心的距離為,故其結果為,故選D.【題目點撥】本題考查函數(shù)在一點處切線斜率的應用,考查圓的程,兩條直線垂直的斜率關系,屬中檔題.9、C【解題分析】
判斷出已知條件中雙曲線的漸近線方程,求得四個選項中雙曲線的漸近線方程,由此確定選項.【題目詳解】兩條漸近線的夾角轉化為雙曲漸近線與軸的夾角時要分為兩種情況.依題意,雙曲漸近線與軸的夾角為30°或60°,雙曲線的漸近線方程為或.A選項漸近線為,B選項漸近線為,C選項漸近線為,D選項漸近線為.所以雙曲線的方程不可能為.故選:C【題目點撥】本小題主要考查雙曲線的漸近線方程,屬于基礎題.10、C【解題分析】
對選項逐個驗證即得答案.【題目詳解】對于,,是偶函數(shù),故選項錯誤;對于,,定義域為,在上不是單調(diào)函數(shù),故選項錯誤;對于,當時,;當時,;又時,.綜上,對,都有,是奇函數(shù).又時,是開口向上的拋物線,對稱軸,在上單調(diào)遞增,是奇函數(shù),在上是單調(diào)遞增函數(shù),故選項正確;對于,在上單調(diào)遞增,在上單調(diào)遞增,但,在上不是單調(diào)函數(shù),故選項錯誤.故選:.【題目點撥】本題考查函數(shù)的基本性質(zhì),屬于基礎題.11、C【解題分析】
根據(jù)雙曲線的解析式及離心率,可求得的值;得漸近線方程后,由點到直線距離公式即可求解.【題目詳解】雙曲線的離心率,則,,解得,所以焦點坐標為,所以,則雙曲線漸近線方程為,即,不妨取右焦點,則由點到直線距離公式可得,故選:C.【題目點撥】本題考查了雙曲線的幾何性質(zhì)及簡單應用,漸近線方程的求法,點到直線距離公式的簡單應用,屬于基礎題.12、D【解題分析】
設雙曲線的左焦點為,連接,,,設,則,,,和中,利用勾股定理計算得到答案.【題目詳解】設雙曲線的左焦點為,連接,,,設,則,,,,根據(jù)對稱性知四邊形為矩形,中:,即,解得;中:,即,故,故.故選:.【題目點撥】本題考查了雙曲線離心率,意在考查學生的計算能力和綜合應用能力.二、填空題:本題共4小題,每小題5分,共20分。13、2025【解題分析】
利用賦值法,結合展開式中各項系數(shù)之和列方程,由此求得的值.再利用二項式展開式的通項公式,求得展開式中的系數(shù).【題目詳解】依題意,令,解得,所以,則二項式的展開式的通項為:令,得,所以的系數(shù)為.故答案為:2025【題目點撥】本小題主要考查二項式展開式各項系數(shù)之和,考查二項式展開式指定項系數(shù)的求法,屬于基礎題.14、【解題分析】
由已知及正弦定理,三角函數(shù)恒等變換的應用可得,從而求得,結合范圍,即可得到答案運用余弦定理和三角形面積公式,結合完全平方公式,即可得到答案【題目詳解】由已知及正弦定理可得,可得:解得,即,由面積公式可得:,即由余弦定理可得:即有解得【題目點撥】本題主要考查了運用正弦定理、余弦定理和面積公式解三角形,題目較為基礎,只要按照題意運用公式即可求出答案15、60【解題分析】試題分析:每個城市投資1個項目有種,有一個城市投資2個有種,投資方案共種.考點:排列組合.16、0.08【解題分析】
先求解這組數(shù)據(jù)的平均數(shù),然后利用方差的公式可得結果.【題目詳解】首先求得,.故答案為:0.08.【題目點撥】本題主要考查數(shù)據(jù)的方差,明確方差的計算公式是求解的關鍵,側重考查數(shù)據(jù)分析的核心素養(yǎng).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解題分析】
(1)由平面平面的性質(zhì)定理得平面,.在中,由勾股定理得,平面,即可得;(2)以為坐標原點建立空間直角坐標系,由空間向量法和異面直線與所成角的余弦值為,得點M的坐標,從而求出二面角的余弦值.【題目詳解】(1)平面平面,平面平面=,,所以.由面面垂直的性質(zhì)定理得平面,,在中,,,由正弦定理可得:,,即,平面,.(2)以為坐標原點建立如圖所示的空間直角坐標系,則,,,設,則,,得,,而,設平面的法向量為,由可得:,令,則,取平面的法向量,則,故二面角的余弦值為.【題目點撥】本題考查了線線垂直的證明,考查二面角的余弦值的求法,解題時要注意空間思維能力的培養(yǎng)和向量法的合理運用,屬于中檔題.18、(Ⅰ)(為參數(shù));(Ⅱ)【解題分析】
(Ⅰ)設點,,則,代入化簡得到答案.(Ⅱ)分別計算,的極坐標方程為,,取代入計算得到答案.【題目詳解】(Ⅰ)設點,,,故,故的參數(shù)方程為:(為參數(shù)).(Ⅱ),故,極坐標方程為:;,故,極坐標方程為:.,故,,故.【題目點撥】本題考查了參數(shù)方程,極坐標方程,弦長,意在考查學生的計算能力和轉化能力.19、(1)乙的技術更好,見解析(2)①,;②【解題分析】
(1)列出分布列,求出期望,比較大小即可;(2)①直接根據(jù)概率的意義可得P0,P8;②設每輪比賽甲得分為,求出每輪比賽甲得1分的概率,甲得0分的概率,甲得分的概率,可的,可推出是等差數(shù)列,根據(jù)可得答案.【題目詳解】(1)記甲乙各生產(chǎn)一件零件給工廠帶來的效益分別為元、元,隨機變量,的分布列分別為10521052所以,,所以,即乙的技術更好(2)①表示的是甲得分時,甲最終獲勝的概率,所以,表示的是甲得4分時,甲最終獲勝的概率,所以;②設每輪比賽甲得分為,則每輪比賽甲得1分的概率,甲得0分的概率,甲得分的概率,所以甲得時,最終獲勝有以下三種情況:(1)下一輪得1分并最終獲勝,概率為;(2)下一輪得0分并最終獲勝,概率為;(3)下一輪得分并最終獲勝,概率為;所以,所以是等差數(shù)列,則,即決賽甲獲勝的概率是.【題目點撥】本題考查離散型隨機變量的分布列和期望,考查數(shù)列遞推關系的應用,是一道難度較大的題目.20、(1);(2).【解題分析】
(1)分類討論去絕對值號,然后解不等式即可.(2)因為對任意,都存在,使得不等式成立,等價于,根據(jù)絕對值不等式易求,根據(jù)二次函數(shù)易求,然后解不等式即可.【題目詳解】解:(1)當時,,則當時,由得,,解得;當時,恒成立;當時,由得,,解得.所以的解集為(2)對任意,都存在,得成立,等價于.因為,所以,且|,①當時,①式等號成立,即.又因為,②當時,②式等號成立,即.所以,即即的取值范圍為:.【題目點撥】知識:考查含兩個
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《金字塔原理》讀書筆記個人所感
- 2022年“安全生產(chǎn)月”宣傳活動方案【4篇】
- 2021公司年終個人總結五篇
- 幼兒園教育實習調(diào)查報告匯編4篇
- 驕傲的初中滿分作文素材700字
- 科學發(fā)展觀提出的背景及形成與發(fā)展
- 生物學院食品安全-課件
- 全面保潔服務協(xié)議書(2篇)
- 兒童圖書銷售代理合同(2篇)
- 山西呂梁2025屆高三上學期11月期中考試化學試卷試題及答案解析
- 財務共享中心招聘筆試環(huán)節(jié)第一部分附有答案
- 國產(chǎn)動漫中的價值觀承載與傳播探索
- 2021-2022學年重慶市渝北區(qū)西師大版六年級上冊期末調(diào)研測試數(shù)學試卷
- 吉林省白山市撫松縣2023-2024學年部編版八年級上學期期末測試歷史試卷
- 改革開放史智慧樹知到期末考試答案2024年
- 市政公司3年戰(zhàn)略規(guī)劃方案
- 2024年全國中考英語試單選(動詞時態(tài))
- 2024年江蘇護理職業(yè)學院高職單招(英語/數(shù)學/語文)筆試歷年參考題庫含答案解析
- 血糖儀使用規(guī)范課件
- DB21-T 2931-2018羊肚菌日光溫室栽培技術規(guī)程
- 貴州省黔東南州2023-2024學年九年級上學期期末文化水平測試化學試卷
評論
0/150
提交評論