




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆四川省廣安市鄰水縣鄰水實驗學校高三數(shù)學試題模擬考試(四)考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),,若成立,則的最小值為()A.0 B.4 C. D.2.已知等差數(shù)列的前項和為,且,則()A.45 B.42 C.25 D.363.已知函數(shù),以下結論正確的個數(shù)為()①當時,函數(shù)的圖象的對稱中心為;②當時,函數(shù)在上為單調(diào)遞減函數(shù);③若函數(shù)在上不單調(diào),則;④當時,在上的最大值為1.A.1 B.2 C.3 D.44.如圖,內(nèi)接于圓,是圓的直徑,,則三棱錐體積的最大值為()A. B. C. D.5.設全集,集合,則=()A. B. C. D.6.已知函數(shù)是定義在R上的奇函數(shù),且滿足,當時,(其中e是自然對數(shù)的底數(shù)),若,則實數(shù)a的值為()A. B.3 C. D.7.復數(shù)的()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知函數(shù)(其中為自然對數(shù)的底數(shù))有兩個零點,則實數(shù)的取值范圍是()A. B.C. D.9.已知函數(shù)則函數(shù)的圖象的對稱軸方程為()A. B.C. D.10.在平面直角坐標系中,已知是圓上兩個動點,且滿足,設到直線的距離之和的最大值為,若數(shù)列的前項和恒成立,則實數(shù)的取值范圍是()A. B. C. D.11.已知點為雙曲線的右焦點,直線與雙曲線交于A,B兩點,若,則的面積為()A. B. C. D.12.某工廠利用隨機數(shù)表示對生產(chǎn)的600個零件進行抽樣測試,先將600個零件進行編號,編號分別為001,002,……,599,600.從中抽取60個樣本,下圖提供隨機數(shù)表的第4行到第6行:若從表中第6行第6列開始向右讀取數(shù)據(jù),則得到的第6個樣本編號是()A.324 B.522 C.535 D.578二、填空題:本題共4小題,每小題5分,共20分。13.“石頭、剪子、布”是大家熟悉的二人游戲,其規(guī)則是:在石頭、剪子和布中,二人各隨機選出一種,若相同則平局;若不同,則石頭克剪子,剪子克布,布克石頭.甲、乙兩人玩一次該游戲,則甲不輸?shù)母怕适莀_____.14.連續(xù)擲兩次骰子,分別得到的點數(shù)作為點的坐標,則點落在圓內(nèi)的概率為______________.15.設,分別是定義在上的奇函數(shù)和偶函數(shù),且,則_________16.已知函數(shù),若函數(shù)恰有4個零點,則實數(shù)的取值范圍是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱柱中,、、分別是、、的中點.(1)證明:平面;(2)若底面是正三角形,,在底面的投影為,求到平面的距離.18.(12分)如圖,四棱錐中,四邊形是矩形,,為正三角形,且平面平面,、分別為、的中點.(1)證明:平面平面;(2)求二面角的余弦值.19.(12分)已知函數(shù).(1)若在處取得極值,求的值;(2)求在區(qū)間上的最小值;(3)在(1)的條件下,若,求證:當時,恒有成立.20.(12分)已知橢圓過點且橢圓的左、右焦點與短軸的端點構成的四邊形的面積為.(1)求橢圓C的標準方程:(2)設A是橢圓的左頂點,過右焦點F的直線,與橢圓交于P,Q,直線AP,AQ與直線交于M,N,線段MN的中點為E.①求證:;②記,,的面積分別為、、,求證:為定值.21.(12分)為調(diào)研高中生的作文水平.在某市普通高中的某次聯(lián)考中,參考的文科生與理科生人數(shù)之比為,且成績分布在的范圍內(nèi),規(guī)定分數(shù)在50以上(含50)的作文被評為“優(yōu)秀作文”,按文理科用分層抽樣的方法抽取400人的成績作為樣本,得到成績的頻率分布直方圖,如圖所示.其中構成以2為公比的等比數(shù)列.(1)求的值;(2)填寫下面列聯(lián)表,能否在犯錯誤的概率不超過0.01的情況下認為“獲得優(yōu)秀作文”與“學生的文理科”有關?文科生理科生合計獲獎6不獲獎合計400(3)將上述調(diào)查所得的頻率視為概率,現(xiàn)從全市參考學生中,任意抽取2名學生,記“獲得優(yōu)秀作文”的學生人數(shù)為,求的分布列及數(shù)學期望.附:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82822.(10分)已知在等比數(shù)列中,.(1)求數(shù)列的通項公式;(2)若,求數(shù)列前項的和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】
令,進而求得,再轉化為函數(shù)的最值問題即可求解.【題目詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【題目點撥】本題主要考查了導數(shù)在研究函數(shù)最值中的應用,考查了轉化的數(shù)學思想,恰當?shù)挠靡粋€未知數(shù)來表示和是本題的關鍵,屬于中檔題.2、D【解題分析】
由等差數(shù)列的性質可知,進而代入等差數(shù)列的前項和的公式即可.【題目詳解】由題,.故選:D【題目點撥】本題考查等差數(shù)列的性質,考查等差數(shù)列的前項和.3、C【解題分析】
逐一分析選項,①根據(jù)函數(shù)的對稱中心判斷;②利用導數(shù)判斷函數(shù)的單調(diào)性;③先求函數(shù)的導數(shù),若滿足條件,則極值點必在區(qū)間;④利用導數(shù)求函數(shù)在給定區(qū)間的最值.【題目詳解】①為奇函數(shù),其圖象的對稱中心為原點,根據(jù)平移知識,函數(shù)的圖象的對稱中心為,正確.②由題意知.因為當時,,又,所以在上恒成立,所以函數(shù)在上為單調(diào)遞減函數(shù),正確.③由題意知,當時,,此時在上為增函數(shù),不合題意,故.令,解得.因為在上不單調(diào),所以在上有解,需,解得,正確.④令,得.根據(jù)函數(shù)的單調(diào)性,在上的最大值只可能為或.因為,,所以最大值為64,結論錯誤.故選:C【題目點撥】本題考查利用導數(shù)研究函數(shù)的單調(diào)性,極值,最值,意在考查基本的判斷方法,屬于基礎題型.4、B【解題分析】
根據(jù)已知證明平面,只要設,則,從而可得體積,利用基本不等式可得最大值.【題目詳解】因為,所以四邊形為平行四邊形.又因為平面,平面,所以平面,所以平面.在直角三角形中,,設,則,所以,所以.又因為,當且僅當,即時等號成立,所以.故選:B.【題目點撥】本題考查求棱錐體積的最大值.解題方法是:首先證明線面垂直同,得棱錐的高,然后設出底面三角形一邊長為,用建立體積與邊長的函數(shù)關系,由基本不等式得最值,或由函數(shù)的性質得最值.5、A【解題分析】
先求得全集包含的元素,由此求得集合的補集.【題目詳解】由解得,故,所以,故選A.【題目點撥】本小題主要考查補集的概念及運算,考查一元二次不等式的解法,屬于基礎題.6、B【解題分析】
根據(jù)題意,求得函數(shù)周期,利用周期性和函數(shù)值,即可求得.【題目詳解】由已知可知,,所以函數(shù)是一個以4為周期的周期函數(shù),所以,解得,故選:B.【題目點撥】本題考查函數(shù)周期的求解,涉及對數(shù)運算,屬綜合基礎題.7、C【解題分析】所對應的點為(-1,-2)位于第三象限.【考點定位】本題只考查了復平面的概念,屬于簡單題.8、B【解題分析】
求出導函數(shù),確定函數(shù)的單調(diào)性,確定函數(shù)的最值,根據(jù)零點存在定理可確定參數(shù)范圍.【題目詳解】,當時,,單調(diào)遞增,當時,,單調(diào)遞減,∴在上只有一個極大值也是最大值,顯然時,,時,,因此要使函數(shù)有兩個零點,則,∴.故選:B.【題目點撥】本題考查函數(shù)的零點,考查用導數(shù)研究函數(shù)的最值,根據(jù)零點存在定理確定參數(shù)范圍.9、C【解題分析】
,將看成一個整體,結合的對稱性即可得到答案.【題目詳解】由已知,,令,得.故選:C.【題目點撥】本題考查余弦型函數(shù)的對稱性的問題,在處理余弦型函數(shù)的性質時,一般采用整體法,結合三角函數(shù)的性質,是一道容易題.10、B【解題分析】
由于到直線的距離和等于中點到此直線距離的二倍,所以只需求中點到此直線距離的最大值即可。再得到中點的軌跡是圓,再通過此圓的圓心到直線距離,半徑和中點到此直線距離的最大值的關系可以求出。再通過裂項的方法求的前項和,即可通過不等式來求解的取值范圍.【題目詳解】由,得,.設線段的中點,則,在圓上,到直線的距離之和等于點到該直線的距離的兩倍,點到直線距離的最大值為圓心到直線的距離與圓的半徑之和,而圓的圓心到直線的距離為,,,..故選:【題目點撥】本題考查了向量數(shù)量積,點到直線的距離,數(shù)列求和等知識,是一道不錯的綜合題.11、D【解題分析】
設雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,設,得,求出的值,即得解.【題目詳解】設雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,所以,.設,則,又.故,所以.故選:D【題目點撥】本題主要考查雙曲線的簡單幾何性質,考查余弦定理解三角形和三角形面積的計算,意在考查學生對這些知識的理解掌握水平.12、D【解題分析】
因為要對600個零件進行編號,所以編號必須是三位數(shù),因此按要求從第6行第6列開始向右讀取數(shù)據(jù),大于600的,重復出現(xiàn)的舍去,直至得到第六個編號.【題目詳解】從第6行第6列開始向右讀取數(shù)據(jù),編號內(nèi)的數(shù)據(jù)依次為:,因為535重復出現(xiàn),所以符合要求的數(shù)據(jù)依次為,故第6個數(shù)據(jù)為578.選D.【題目點撥】本題考查了隨機數(shù)表表的應用,正確掌握隨機數(shù)表法的使用方法是解題的關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
用樹狀圖法列舉出所有情況,得出甲不輸?shù)慕Y果數(shù),再計算即得.【題目詳解】由題得,甲、乙兩人玩一次該游戲,共有9種情況,其中甲不輸有6種可能,故概率為.故答案為:【題目點撥】本題考查隨機事件的概率,是基礎題.14、【解題分析】
連續(xù)擲兩次骰子共有種結果,列出滿足條件的結果有11種,利用古典概型即得解【題目詳解】由題意知,連續(xù)擲兩次骰子共有種結果,而滿足條件的結果為:共有11種結果,根據(jù)古典概型概率公式,可得所求概率.故答案為:【題目點撥】本題考查了古典概型的應用,考查了學生綜合分析,數(shù)學運算的能力,屬于基礎題.15、1【解題分析】
令,結合函數(shù)的奇偶性,求得,即可求解的值,得到答案.【題目詳解】由題意,函數(shù)分別是上的奇函數(shù)和偶函數(shù),且,令,可得,所以.故答案為:1.【題目點撥】本題主要考查了函數(shù)奇偶性的應用,其中解答中熟記函數(shù)的奇偶性,合理賦值求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.16、【解題分析】
函數(shù)恰有4個零點,等價于函數(shù)與函數(shù)的圖象有四個不同的交點,畫出函數(shù)圖象,利用數(shù)形結合思想進行求解即可.【題目詳解】函數(shù)恰有4個零點,等價于函數(shù)與函數(shù)的圖象有四個不同的交點,畫出函數(shù)圖象如下圖所示:由圖象可知:實數(shù)的取值范圍是.故答案為:【題目點撥】本題考查了已知函數(shù)零點個數(shù)求參數(shù)取值范圍問題,考查了數(shù)形結合思想和轉化思想.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解題分析】
(1)連接,連接、交于點,并連接,則點為的中點,利用中位線的性質得出,,利用空間平行線的傳遞性可得出,然后利用線面平行的判定定理可證得結論;(2)推導出平面,并計算出,由此可得出到平面的距離為,即可得解.【題目詳解】(1)連接,連接、交于點,并連接,則點為的中點,、分別為、的中點,則,同理可得,.平面,平面,因此,平面;(2)由于在底面的投影為,平面,平面,,為正三角形,且為的中點,,,平面,且,因此,到平面的距離為.【題目點撥】本題考查線面平行的證明,同時也考查了點到平面距離的計算,考查推理能力與計算能力,屬于中等題.18、(1)見解析;(2)【解題分析】
(1)取中點,中點,連接,,.設交于,則為的中點,連接.通過證明,證得平面,由此證得平面平面.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出二面角的余弦值.【題目詳解】(1)取中點,中點,連接,,.設交于,則為的中點,連接.設,則,,∴.由已知,,∴平面,∴.∵,∴,∵,∴平面,∵平面,∴平面平面.(2)由(1)及已知可得平面,建立如圖所示的空間坐標系,設,則,,,,,,,,設平面的法向量為,∴,令得.設平面的法向量為,∴,令得,∴,∴二面角的余弦值為.【題目點撥】本小題主要考查面面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.19、(1)2;(2);(3)證明見解析【解題分析】
(1)先求出函數(shù)的定義域和導數(shù),由已知函數(shù)在處取得極值,得到,即可求解的值;(2)由(1)得,定義域為,分,和三種情況討論,分別求得函數(shù)的最小值,即可得到結論;(3)由,得到,把,只需證,構造新函數(shù),利用導數(shù)求得函數(shù)的單調(diào)性與最值,即可求解.【題目詳解】(1)由,定義域為,則,因為函數(shù)在處取得極值,所以,即,解得,經(jīng)檢驗,滿足題意,所以.(2)由(1)得,定義域為,當時,有,在區(qū)間上單調(diào)遞增,最小值為,當時,由得,且,當時,,單調(diào)遞減;當時,,單調(diào)遞增;所以在區(qū)間上單調(diào)遞增,最小值為,當時,則,當時,,單調(diào)遞減;當時,,單調(diào)遞增;所以在處取得最小值,綜上可得:當時,在區(qū)間上的最小值為1,當時,在區(qū)間上的最小值為.(3)由得,當時,,則,欲證,只需證,即證,即,設,則,當時,,在區(qū)間上單調(diào)遞增,當時,,即,故,即當時,恒有成立.【題目點撥】本題主要考查導數(shù)在函數(shù)中的綜合應用,以及不等式的證明,著重考查了轉化與化歸思想、分類討論、及邏輯推理能力與計算能力,對于此類問題,通常要構造新函數(shù),利用導數(shù)研究函數(shù)的單調(diào)性,求出最值,進而得出相應的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構造新函數(shù),直接把問題轉化為函數(shù)的最值問題.20、(1);(2)①證明見解析;②證明見解析【解題分析】
(1)解方程即可;(2)①設直線,,,將點的坐標用表示,證明即可;②分別用表示,,的面積即可.【題目詳解】(1)解之得:的標準方程為:(2)①,,設直線代入橢圓方程:設,,,直線,直線,,,,,.②,所以.【題目點撥】本題考查了直接法求橢圓的標準方程、直線與橢圓位置關系中的定值問題,在處理此類問題一般要涉及根與系數(shù)的關系,本題思路簡單,但計算量比較大,是一道有一定難度的題.21、(1),,.(2)填表見解析;在犯錯誤的概率不
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 關+于英語語篇結構標注研究綜述
- 膳食因素和食管癌
- 林業(yè)年度工作總結范文11篇
- 江蘇開放大學2025年春服務營銷1單項選擇題題庫
- 河北省邢臺市2024~2025學年 高二下冊第四次質量檢測數(shù)學試卷附解析
- 2024年廈門市第十中學招聘真題
- 公司春節(jié)活動方案
- 社區(qū)社區(qū)服務管理學研究管理基礎知識點歸納
- 石大學前兒童保育學課件2-3早期發(fā)育與科學喂養(yǎng)
- 極地浮游生物的種群動態(tài)與棲息地重構-洞察闡釋
- 2025山東“才聚齊魯成就未來”水發(fā)集團高校畢業(yè)招聘241人筆試參考題庫附帶答案詳解
- 2024年度江蘇省數(shù)據(jù)集團有限公司社會招聘筆試參考題庫附帶答案詳解
- GB/T 45355-2025無壓埋地排污、排水用聚乙烯(PE)管道系統(tǒng)
- 《愛蓮說》對比閱讀-2024-2025中考語文文言文閱讀專項訓練(含答案)
- DZ∕T 0214-2020 礦產(chǎn)地質勘查規(guī)范 銅、鉛、鋅、銀、鎳、鉬(正式版)
- GB 4806.7-2016食品安全國家標準食品接觸用塑料材料及制品
- 2022年北京市西城區(qū)八年級下學期期末語文試卷
- 中班繪本《跑跑鎮(zhèn)》微課件
- 基于崗位拓展模型和KPI的主基二元考核績效體系的構建
- 初三英語畢業(yè)考試補考試卷
- 消防安全工作臺賬表格匯總
評論
0/150
提交評論